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Given a set S of n points in the plane, a radial ordering of S with respect to a point p (not in S) is a clockwise
circular ordering of the elements in S by angle around p. If S is two-colored, a colored radial ordering is a radial
ordering of S in which only the colors of the points are considered. In this paper, we obtain bounds on the number
of distinct non-colored and colored radial orderings of S. We assume a strong general position on S, not three points
are collinear and not three lines—each passing through a pair of points in S—intersect in a point of R2 \ S. In the
colored case, S is a set of 2n points partitioned into n red and n blue points, and n is even. We prove that: the number
of distinct radial orderings of S is at most O(n4) and at least Ω(n3); the number of colored radial orderings of S is at
most O(n4) and at least Ω(n); there exist sets of points with Θ(n4) colored radial orderings and sets of points with
only O(n2) colored radial orderings.

Keywords: radial orderings, colored point sets, star polygonizations

1 Introduction
Let S be a set of n points in the plane. We say that S is in strong general position if it is in general
position (not three of its points are collinear) and every time that three lines—each passing through a pair
of points in S—intersect, they do so in a point in S. Unless otherwise noted, all point sets in this paper
are in strong general position. Let p be a point not in S such that S ∪ {p} is in general position; we call
p an observation point. A radial ordering of S with respect to p is a clockwise circular ordering of the
points in S by their angle around p. Thus these orderings are equivalent under rotations. If every point in
S is assigned one of two colors, say red and blue, then a colored radial ordering of S with respect to p is
a circular clockwise ordering of the colors of the points in S by their angle around p. Thus permutations
between points of the same color yield the same colored radial ordering.
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Let ρ(S) be the number of distinct radial orderings of S with respect to every observation point in the
plane. Likewise, let ρcol(S) be the number of distinct colored radial orderings of S with respect to every
observation point in the plane. We define the following functions:

f(n) := max{ρ(S) : S is a set of n points}
fcol(n) := max{ρcol(S) : n is even and S is a set of n red and n blue points}
g(n) := min{ρ(S) : S is a set of n points}

gcol(n) := min{ρcol(S) : n is even and S is a set of n red and n blue points}

In this paper we prove the following bounds.

f(n) = Θ(n4)
fcol(n) = Θ(n4)

Ω(n3) ≤ g(n) ≤ O(n4)
Ω(n) ≤ gcol(n) ≤ O(n2)

The first equality (f(n) = Θ(n4)) has been noted before in the literature. In [8, 7, 15, 16] f(n) =
O(n4) is proved. In [16] the author proves both f(n) = O(n4) and f(n) = Ω(n4). As far as we know,
all the other bounds are new.

A different problem but in the same setting has been studied recently in [15]. In that paper, the authors
study what a robot can infer from its environment when all the information that is available is the cyclic
positions of some landmarks as they appear from the robot’s position. Other authors have considered
problems of the same flavor, when a similar kind of information is available. See for example [10, 11, 14].
In [8] the authors study the algorithmic problem of updating the radial ordering of a moving observation
point.

We point out that computing the radial ordering of S around every point in S is an unavoidable step in
some geometric algorithms, as for example, performing a radial sweeping of a point set. Moreover, many
optimization problems are solved by considering the arrangement generated by every line passing through
every pair of points in S, and finding the optimum point inside each of the O(n4) cells in the arrangement
[12]. In many cases this is because the radial ordering of the points in S around every point within a cell is
the same. It could be interesting in this scenario to know how many cells induce the same radial ordering.

For a bi-colored point set, a radial sweeping algorithm also requires the ordering as an initial step, so
it could be useful to know bounds on the number of different colored radial ordering of S from points in
the plane. From the combinatorial point of view, this problem is related to partitioning bi-colored point
sets with k-fans [3, 4]. A k-fan in the plane is a point p (called the center) and k rays emanating from p.
This structure can be used to partition S into k monochromatic subsets and it depends only on the colored
radial ordering of S with respect to p. The existence of balanced—each part having an equal number of
red an blue points—k-fans for colored point sets has been studied in recent papers [5, 6] but, as far as we
know, the number of different monochromatic partitions induced by k-fans has not yet been considered.

The assumptions that S is in strong general position; that S has the same number of red and blue points
and that n is even, may seem arbitrary. However, the three of them are crucial hypothesis in our results
(see Section 4).

A preliminary version of this paper appeared in [9].
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Fig. 1: The order partition of a set of four points.

2 Uncolored Case
In this section S is a set of n points in strong general position in the plane. We discretize the problem
by partitioning the set of observation points into a finite number of sets so that points in the same set
induce the same radial ordering. This partition is made by half-lines, which if crossed by an observation
point, generate a transposition of two consecutive elements in the radial ordering. For every pair of
points x1, x2 ∈ S, consider the line passing through them. Contained in this line we have two half-lines;
one begins in x1 and does not contain x2, while the other begins in x2 and does not contain x1. Two
observation points are in the same element of the partition if they can be connected by a path which does
not intersect any half-line. We call this partition the order partition (see Figure 1). Since it induces a
decomposition of the plane, we refer to its elements as cells. The order partition is used (under different
names) also in [8, 7, 15]. Note that if a point moves in a path not crossing any half-line, the radial ordering
with respect to this point is the same throughout the motion. Thus points in the same cell induce the same
radial ordering. As a set of three points already shows, the converse is not true in general; two observation
points may lie in different cells of the order partition and induce the same radial ordering of S.

As mentioned before, the following two bounds on f(n) have been proved before; we provide proofs
for completeness.

Theorem 2.1 f(n) ≤ O(n4).

Proof: The order partition cannot have more cells than the arrangement induced by the lines passing
through each pair of points in S. Such an arrangement has O(n4) cells. 2

Theorem 2.2 f(n) ≥ Ω(n4).

Proof: Follows from f(n) ≥ fcol(n) and Theorem 3.2 2

We now prove an upper and a lower bound on g(n). The upper bound follows from the upper bound on
f(n).

Theorem 2.3 g(n) ≤ O(n4).
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The lower bound on g(n) is far more elaborate. First we show a lower bound of Ω(n4) on the number
of cells in the order partition. As far as we know, this is the first lower bound ever given on the size of the
order partition.

Theorem 2.4 The number of cells in the order partition of S is Ω(n4).

Proof: Let L be the set of lines passing through each pair of points in S. First we show that in the line
arrangement A generated by L there are n4

8 −O(n3) cells. We may regard A as a plane graph G with an
extra vertex v∗ placed at infinity. So that v∗ is contained in all the unbounded faces of G and twice in all
the lines in L. Let V , E and F be the number of vertices, edges and faces of G respectively. Note that by
our strong general assumptionG has exactly: one vertex of degree n(n−1); n vertices of degree 2(n−1)
and V −n−1 vertices of degree 4. ThusE equals n(n−1)/2+n(n−1)+2V −2n−2 which is 2V +O(n2).
By Euler’s formula F equals V +O(n2). Let p and q be any two points in S. Let Lp be the set of lines in
L that contain p but not q. Let Lq be the set of lines in L that contain q but not p. Note that each line in
Lp intersects each line in Lq in a point not in S, with the exception of only two cases. The case in which
both lines are parallel or the case in which they both contain the same point in S \ {p, q}. In total each
case occurs at most (n−2) times; thus p and q induce at least (n−2)(n−2)−2(n−2) = (n−2)(n−4)
vertices of degree 4. Doing this for every pair of vertices, we count each 4-degree vertex exactly four
times. In total there are n4

8 −O(n3) vertices and n4

8 −O(n3) faces in G (and the same number of cells in
A). The order partition can be obtained by removing from A each line segment joining a pair of points of
S. Let e1, . . . , e(n

2)
be these line segments in any given order. Let cr(S) be the number of pairs of these

edges that intersect in their interior. Let M be the number of vertices of A lying in the interior of any
of the ei’s. Note that for each set of four points of S we obtain: one vertex of M if the set is in convex
position and three vertices otherwise. The number of sets of four elements of S that are in convex position
is precisely cr(S). Thus M = 3

(
n
4

)
− 2 cr(S). It is known that cr(S) is bounded from below by 3

8

(
n
4

)
(see [1, 2, 13]). Thus M is at most 9

4

(
n
4

)
= 3

32n
4 −O(n3). We remove each ei in order, and show that at

the end Ω(n4) cells remain. Let di be the number of vertices in M lying in the interior of ei just before
it is removed. Note that when ei is removed, in the worst case, di + 1 cells of A are lost. Thus when all

of the ei’s are removed at least n4

8 −O(n3)−
∑(n

2)
i=1(di + 1) = n4

8 −O(n3)−M −
(
n
2

)
≥ n4

32 −O(n3)
cells remain. 2

We now prove a useful lemma for finding distinct radial orderings of S.

Lemma 2.5 (Partition Lemma) Let (R,B) be a partition of S into non-empty subsets. Let p and q be
two points in different cells of the order partition. If no half-line spanned by a point in R and point in B
intersects the line segment with endpoints p and q, then the radial orderings of S as seen from p and q are
distinct.

Proof: Since p and q lie in different cells of the order partition, the line segment joining them must
intersect at least one half-line. Let x1, x2 ∈ S be the points defining this half-line. Note that x1 and x2
are both in R or both in B. Let x3 ∈ S be a point in the element of the partition not containing x1 and x2.
Assume without loss of generality that the radial ordering of {x1, x2, x3} with respect to p is [x1, x2, x3].
Since the line segment joining p and q crosses the half-line only once, the radial ordering of {x1, x2, x3}
with respect to q is [x2, x1, x3]. Therefore, the radial ordering of S with respect to p is different from the
radial ordering with respect to q. 2
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Fig. 2: The cone in the proof of Theorem 2.7.

The following Lemma is also proved in [7](Theorem 4.2) and in [15](Theorem 1), we include a proof
for completeness.

Lemma 2.6 Let p and q be two observation points in the interior of the convex hull of S, lying in different
cells of the order partition. Then the radial orderings of S with respect to p and q are distinct.

Proof: Let ` be the straight line containing p and q. Since p and q are in the interior of the convex hull of
S, ` partitions S into two sets that together with p and q satisfy the conditions of the Partition Lemma. 2

Finally, we combine the above results to prove the lower bound on g(n).

Theorem 2.7 g(n) ≥ Ω(n3).

Proof: An open cell of the order partition is interior if it intersects the interior of the convex hull of S and
it is exterior if it has a point not in the interior of the convex hull of S. Note that a cell can be both interior
and exterior. If less than half of the the cells are exterior then at least half of them are interior and we are
done by Theorem 2.4 and Lemma 2.6. Assume then, that at least half of the cells are exterior. Thus there
are Ω(n4) exterior cells.

Let C be the convex hull of S and m be its number of vertices. Let p be one of these vertices. Let p′

and p′′ be the vertices previous and next to p in C in clockwise order respectively. Let Γp be the convex
cone with apex p, bounded by: the infinite ray with apex p and passing through p′′ and the infinite ray
with apex p′ and passing through p (see Figure 2). Let R := {p} and B := S \ {p}. Note that any two
points in Γp lying in different cells of the order partition, together with R and B, satisfy the conditions of
the Partition Lemma. Therefore, the radial orderings of S with respect to any two points in Γp lying in
different cells of the order partition are distinct. For each vertex of C define such a cone. Every exterior
cell intersects one of these cones. Therefore there is a cone intersecting Ω(n4/m) = Ω(n3) of them and
the result follows. 2
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Fig. 3: A bi-colored set with Ω(n4) different colored radial orderings.

3 Colored Case
In this section n is even, and S is a set of n red and n blue points in strong general position in the plane.
We prove upper and lower bounds on fcol(n) and gcol(n).

Theorem 3.1 fcol(n) ≤ O(n4).

Proof: Follows from fcol(n) ≤ f(n) and Theorem 2.1 2

Theorem 3.2 fcol(n) ≥ Ω(n4).

Proof: Assume that n ≥ 20. We start by constructing a four-colored set of points S′ with Ω(n4) distinct
colored radial orderings; afterwards we obtain S by replacing each point of a given color with a suitable
“pattern” of red and blue points. These four patterns are chosen so that if they appear consecutively in a
radial ordering, then any other equivalent radial ordering must match patterns of the same type. Since the
patterns behave like the original four colors, the new set also has Ω(n4) colored radial orderings.

Let B1, B2 and B3 be three disks of radius 1/4, whose centers p1, p2, and p3 are the vertices of an
equilateral triangle of side length equal to one. Let ε, α > 0. Let C1 and C2 be circles of radius ε centered
at p1 and p2, respectively. Let γ1 and γ2 be infinite wedges of angle α, with apices p1 and p2 respectively.
Assume that γ1 is bisected by the line segment joining p1 and p3, while γ2 is bisected by the line segment
joining p2 and p3. Refer to Figure 3. Let m and r be the only natural numbers such that n = 10m + r
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and 10 ≤ r ≤ 19. Partition γ1 with m infinite rays emanating from p1, such that the angle between two
consecutive rays equals α/(m + 1). Do likewise for γ2, with m infinite rays emanating from p2 . At
every point of intersection of these rays with the boundary of B1, place a blue point; at every point of
intersection with C1 a red point; at every point of intersection with the boundary of B2 a yellow point;
finally, at every point of intersection with C2 a green point. Thus m points of each color are placed. This
ends the construction of S′.

Let L be the set of lines passing through a red and a blue point. Let L′ be the set of lines passing
through a yellow and a green point. Choose α and ε small enough so that the following conditions are
met: (1) Every line in L∪L′ intersects the interior of B3 and these are the only lines passing through two
points of S′ that do. (2) Neither two lines in L nor two lines in L′ intersect at a point in the interior of B3.
(3) Every line in L intersects every line in L′ at a point in B3. By the previous conditions and the fact that
|L| = m2 and |L′| = m2, L ∪ L′ splits B3 into precisely (m + 1)4 cells. For each of these cells choose
a point qi in its interior. We show that the colored radial orderings of S′ as seen from each of these points
is different. Note that for each point in B3 there exists a line separating the red and blue points from the
green and yellow points. Thus we may assume, that the colored radial orderings as seen from points inB3

are written so that all the blue and red points appear before the green and yellow points. Let qi and qj be
two points in B3, belonging to different cells of the order partition. Consider the colored radial ordering
when walking from qi to qj in a straight line. By conditions (1) and (2), the only transpositions that occur
when a half-line is crossed is between a red and a blue point or between a yellow and a green point. This
implies that the k-th red point is always the same red point and that the number of blue points after the
k-th red point is either increasing or decreasing monotonically; the same observation holds for the green
and yellow points. Therefore, in the walk once a line in L ∪ L′ is crossed, all colored radial orderings
afterwards will be distinct. Thus the number of different colored radial orderings of S′ is at least (m+1)4,
which is Ω(n4).

To construct S, we replace the points in S′ by patterns of red and blue points, in such a way that the
colored radial orderings at points qi remain different. The points in the patterns replacing a point p ∈ S′
are placed consecutively in the same circle containing p. If these points are placed close enough to p, then
they will appear consecutively in the colored radial ordering with respect to every point qi. The points
of S′ are replaced in the following way: every blue point with a pattern of one red and one blue point;
every red point with a pattern of two red and two blue points; every yellow point with a pattern of three
red and three blue points; and every green point with a pattern of four red and four blue points. Refer to
Figure 3. Note that our choice of patterns implies that two equivalent radial orderings must match patterns
of the same type. So far, 10m red and 10m blue points have been placed. The remaining 2r points can
be placed in such a way that in the radial ordering with respect to every point qi the r red points appear
consecutively followed by the r blue points (for example in the line segment joining p1 and p2. This final
condition guarantees that the colored radial orderings at each qi remain different. 2

To prove the lower bound on g(n), we construct a two-colored set, P , of 2n points, in strong general
position, with at mostO(n2) colored radial orderings. The construction is somewhat involved. We employ
a similar technique as in the proof of Theorem 3.2. We start with a set of n/2 points in strong general
position in the unit circle. All the points have the same color and thus the colored radial orderings are all
equivalent. Afterwards, we replace each point with a symmetric pattern of red and blue points. This is
done in such a way that the new number of distinct colored radial orderings increases to at most O(n2).
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Fig. 4: A bi-colored set with O(n2) different colored radial orderings.

Before detailing the construction of P , we present some definitions and a helpful lemma. A set of lines
is in general position if not three lines share a common point and every two lines intersect. Every line ` in
the plane is defined as ` := {t ∈ R : p+ t · v}, for some point p in the plane and some unit vector v in R2.
Define the distance between two lines `1 and `2 as the minimum of ‖p1− p2‖+ ‖v1− v2‖, taken over all
pairs (p1, v1), (p2, v2) that define `1 and `2, respectively. Let L be a set of lines in the plane. For δ > 0,
a δ-perturbation of L is any set of lines obtained from L by replacing each line by a line at a distance of
at most δ. Likewise S′ is a δ-perturbation of S if it can be obtained from S by replacing each point by a
point at a distance of at most δ.

Lemma 3.3 Let L be a set of lines in general position and L′ a δ-perturbation of L. If δ is small enough
then the line arrangement A generated by L is combinatorially equivalent to the line arrangement A′
generated by L′.

Proof: Let `1 and `2 be two lines in L and `′1 and `′2 be the corresponding lines in L′. Let p be the point
of intersection of `1 and `2 and let p′ be the intersection of `′1 and `′2. Note that if δ is small enough, p′ is
a point. Let ε > 0. Choose δ small enough so that the intersection of any two lines in L′ is a point, and
such that its distance to the corresponding intersection point in L is at most ε.

Now, choose ε small enough so that the intersection points of any two pairs of lines in L′ are at a
distance greater than 0. Move each line of L′ continuously to its corresponding line in L, monotonically
decreasing their distance throughout the process. Note that since through out the motion not three lines
can share a point there are no combinatorial changes in A′. Therefore, A′ is combinatorially equivalent
to A. 2
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Fig. 5: Schematic depiction of conditions (2) and (3).

We now proceed with the construction of P . Let P ′′ be a set of n/2 points in strong general position
on the unit circle C, centered at the origin. Let L′′ be the set of lines passing through every pair of points
in P ′′, together with the lines passing through every point of P ′′ and tangent to C. Let A′′ be the line
arrangement generated by L′′.

Let δ1, δ2 > 0, such that δ1 > 2δ2. We form a new set of points P ′, by replacing each point pi of P ′′

with a set of four points P ′i := {pi1, pi2, pi3, pi4}, placed clockwise consecutively in C, and colored “red,
blue, blue, red” respectively. Place: pi1 at p; pi4 at distance δ1 from pi1; pi2 at distance δ2 from pi1, and
pi3 at distance δ2 from pi4. See Figure 4.

For 1 ≤ k ≤ 4, let L′k be the set of lines passing through every pair of points (pik, pjk), together with
the lines passing through every point of pik and tangent to C. Let A′k be the line arrangement generated
by L′k. Note that A′′,A′1,A′2,A′3 and A′4 are all combinatorially equivalent.

Choose δ1 small enough so that the following condition is met.

(1) LetC1, C2 andC3 be three closed elements (vertices, edges or cells) inA′i,A′j andA′k, respectively.
If C1, C2 and C3 have a non empty intersection, their corresponding elements in A′′ have a non
empty intersection.

Choose δ2 small enough with respect to δ1 so that the following conditions are met:

(2) Let `1 be a line passing through a point of P ′j and pi1 (i 6= j). Let `2 be a line passing through a
point of P ′k and pi2 (i 6= k and j 6= k). If q is the intersection point of `1 and `2, then q is in the
same cell of A′3 as pi1. (See Figure 5)

(3) Let `1 be a line passing through a point of P ′j and pi4 (i 6= j). Let `2 be a line passing through a
point of P ′k and pi3 (i 6= k and j 6= k). If q is the intersection point of `1 and `2, then q is in the
same cell of A′2 as pi4. (See Figure 5)
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Finally, let P be a δ3-perturbation of P ′, with δ3 < δ2, such that P is in strong general position and its
elements still belong to C. Relabel the points so that pik is now in P . Define Lk, Pk and Ak with respect
to P . We choose δ3 small enough so that: EveryAk is combinatorially equivalent to A′′ (Lemma 3.3) and
conditions (1), (2) and (3) are still met (with A2,A3, Pj , Pk taking the place of A′2,A′3, P ′j , P ′k).

Theorem 3.4 gcol(n) ≤ O(n2).

Proof: We prove that P has O(n2) colored radial orderings. Let q be an observation point in the plane.
Since there is only one cell of the order partition of P inside its convex hull, we assume that q lies outside
the convex hull of P . Let Ck be the cell containing q in Ak. Let Dk be the cell corresponding to Ck in
A′′. Let D := D1 ∩D2 ∩D3 ∩D4. By condition (1) and Helly’s Theorem, D is non-empty.

There are three cases depending on whether D is a cell, an edge or a vertex of A′′ (see Figure 4):
Case 1. D is a cell. In this case, every pattern replacing a point of P ′′ will appear consecutively in the

colored radial ordering around q. Moreover, by the symmetry of the patterns they are all “red, blue, blue,
red”. So in this case there is only one possible colored radial ordering.

Case 2. D is an edge. We distinguish two sub-cases, whether the edge is contained in a line passing
through two points pi and pj of P ′′ or whether it is contained in one of the tangent lines passing through
a point pk of P ′′.

In the first sub-case, the patterns at points different from pi and pj will appear consecutively in the
colored radial ordering (thus each pattern appears as “red, blue, blue, red”). However, the points in the
patterns at pi and pj will appear together, but they may be intermixed. Since there are only 8 points
involved, there is only a constant number of ways in which this can happen. The second sub-case is
similar.

Case 3. D is a vertex. We split the analysis on whether D is in P ′′ or not.

• D is a point in P ′′. Let pi be the point in P ′′ such that pi equals D. First suppose that q is neither in
the cell of A3 that contains pi1 nor in the cell of A2 that contains pi4. By conditions (2) and (3) in
the colored radial ordering with respect to q, points pi1 and pi2 appear consecutively or the points
between them all belong to some Pj . Similarly for points pi3 and pi4 and some Pk. There are at
most a constant number of ways in which the points of Pj and Pk can be intermixed with {pi1, pi2}
and {pi3, pi4} respectively. The patterns replacing other points of P ′′ appear consecutively (thus
each pattern appears as “red, blue, blue, red”). Summarizing, the points in {pi1, pi2} ∪ Pj appear
consecutively as do the points in {pi3, pi4} ∪ Pk and the remaining points appear alternatively as
“red, blue, blue, red”. There are only O(n) ways in which {pi1, pi2} ∪ Pj can appear with respect
to {pi3, pi4} ∪ Pk .

Now suppose that q is in the cell of A2 that contains pi4. By conditions (2) and (3) in the colored
radial ordering of P \ {pi3, pi4} with respect to q, pi1 and pi2 appear consecutively; the remaining
points of P \ {pi3, pi4}, appear alternatively as “red, blue, blue, red”. Thus there are only two
possible radial orderings (depending on the position of pi2 with respect to pi1) of P \ {pi3, pi4}
with respect to q. The only thing remaining to consider are the O(n2) ways in which pi3 may
appear with respect to pi4.

The case where q is in the cell of A3 that contains pi1 is similar to the case where q is in the cell of
A2 that contains pi4. In this case there are also at most O(n2) colored radial orderings.
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Fig. 6: A walk showing a linear lower bound on the number of colored radial orderings.

• D is not a point in P ′′.

In this case D is the intersection point of two lines `1 and `2 in L′′. These lines may be defined
by two points or one point of P ′′ (depending on whether they are tangent lines or not). In both
situations, we have that the patterns at the points of P ′′ defining each line appear together but
intermixed. The patterns at any other points will appear consecutively (thus each pattern appears
as “red, blue, blue, red”). Since there are at most four points defining `1 and `2, the number of
ways in which their respective pattern points can appear is at most a constant. The only thing left
to consider is the O(n) number of ways in which the patterns at the points defining `1 can appear
with respect to those of `2.

There are at most O(n2) distinct colored radial orderings in every case. 2

We now give a linear lower bound for the number of colored radial orderings of S. Some notation is
required. For a given radial ordering σ of S, let σ(i) (0 ≤ i < 2n) be its (i+1)th-element (where addition
is taken modulo 2n). Thus, two radial orderings σ and ρ are equivalent whenever there exists a natural
number j such that σ(i) = ρ(i+j) for all i; they are equivalent as colored radial orderings when the color
of σ(i) is equal to the color of ρ(i+ j) for all i.

Theorem 3.5 gcol(n) ≥ n.

Proof: Throughout the proof we use both colored and non-colored radial orderings. In each instance we
explicitly mention to which of the two types of radial orderings we are referring to. To obtain the claimed
lower bound, we show a walk in which n distinct colored radial orderings are seen. First, we choose a red
point p of S and let C be a circle centered at p. After that, we walk once clockwise around C. We choose
C to be small enough so that the only half-lines crossed in the walk are those involving p (see Figure 6).
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Consider the non-colored radial orderings seen in this walk. Note that since C does not cross any half-
line defined by points of S \ {p}, the points of S \ {p} remain fixed in these non-colored radial orderings.
The only point that changes position is p; it moves counter clockwise, transposing an element of S \ {p}
every time a half-line is crossed. We prove that every time that p transposes a blue point, a new different
colored radial ordering is seen.

Since in the walk around C, the blue points of S always appear in the same non-colored radial ordering,
we assume that all the non-colored radial orderings of S as seen from points in C are written starting at the
same blue point. Among these radial orderings, for each k = 0, . . . , n − 1, let σk be the radial ordering
in which p is just after the (k + 1)-th blue point; refer to Figure 6. We show that all the colored radial
orderings associated with these n non-colored radial orderings are distinct.

Let then σk and σl be two such non-colored radial orderings encountered at points q1 and q2 in the
walk, respectively. Suppose that σk and σl are equivalent as colored radial orderings. Then there exist
a fixed natural number j such that for all i = 0, . . . , 2n − 1, the color of σk(i) is equal to the color of
σl(i+ j).

We now define a directed graph that captures the relationship between σk and σl; we employ the
structure of this graph to conclude that k must equal l. Let G be the directed graph whose vertex set is S
and in which, for all i = 0, . . . , 2n − 1 there is an arc from σk(i) to σl(i + j); see Figure 7. Note that
every vertex in G has indegree and outdegree equal to one. Therefore, G is the union of pairwise disjoint
directed cycles of points of the same color.

Let Γ be the cycle containing p and let S′ := S \ V (Γ). Let ρ1 and ρ2 be the non-colored radial
orderings of S′ as seen from q1 and q2, respectively. We make the additional assumption that ρ1 is written
starting at σk(0) while ρ2 is written starting at σl(2n − j) (note that being blue, these points are not in
Γ). Since in particular p is not in S′, these radial orderings are equivalent. Therefore, there exists a fixed
natural number j′ such that ρ1(i) = ρ2(i + j′), for all i. Since S′ comes from removing the points of Γ,
ρ1 can be formed by removing the elements of Γ from σk and ρ2 can be formed by writing σl starting at
σl(2n − j) and then removing the elements of Γ (See Figure 7). Thus the color of ρ1(i) is equal to the
color of ρ2(i) for all i.

Let G′ be the directed graph whose vertex set is S′ and in which there is an arc from ρ1(i) to ρ2(i). As
before, every vertex in G′ has indegree and outdegree equal to one. Therefore G′ is the union of disjoint
cycles of vertices of the same color (in fact G′ is the subgraph of G induced by S′). Since ρ2 is just a
“shift” of j′ places to the right of ρ1, all of these cycles have the same length m. Therefore, both the
number of red and blue points in S′ are multiples of m. This implies that the number of vertices in Γ is
also a multiple of m.

Let r · m be the length of Γ, since Γ is not empty, then r ≥ 1. Assume that Γ, starting from p
is given by (p = v1, v2, . . . , vm, . . . , v2m, . . . , vrm). Let bk be the (k + 1)-th blue point and Γ′ :=
(bk = u1, . . . , um) be the cycle in G containing bk. Consider the following sequence of pairs of vertices
(u1, v1), (u2, v2), . . . , (um, vm). Note that in σk, the point v1 = p is just after the point u1 = bk;
afterwards, for 2 ≤ i ≤ m, the point vi is just after the point ui in both σl and σk. (Recall that the
order of S \ {p} in σk and σl is the same.) Suppose that r > 1, then the point vm+1 is just after u1 in
σl while in σk it is just after the point v1(which is equal to p). Consider now the following sequence of
vertices (v1, vm+1), (v2, vm+2), . . . , (v(r−1)m+1, vrm+1 = p). From the same arguments as before, for
m + 2 ≤ i ≤ rm, the point vi is just after the point vi−m in both σk and σl. For i = rm + 1, the point
vrm+1 is just after the point v(r−1)m+1 in σl, but vrm+1 = p and v(r−1)m+1 is red, a contradiction since
p is just after a blue point in σl. Thus r = 1. This implies that σk = σl, since v1 (which is equal to p) is
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Fig. 7: Two equivalent colored radial orderings and their corresponding graph.

after u1 (which is equal to bk) in both σl and σk. 2

4 Conclusions
We proved an upper bound of O(n4) and a lower bound of Ω(n3) on the number of radial orderings
that every set of n points in strong general position in the plane must have. The upper bound was first
given in [7]. As a corollary in the same paper it was noted that every set of n points in the plane contains
O(n4) different star shaped polygonizations. Our result implies that every set of n points in strong general
position in the plane has Ω(n3) different star shaped polygonizations. We leave the closing of this gap as
an open problem:

Conjecture 4.1 g(n) = Θ(n4).

We used the assumption that S is in strong general position heavily on the proof of the lower bound on
g(n). However, we believe that it is not needed and that only general position (no three collinear points)
is sufficient.

Conjecture 4.2 If S is a set of n points in general position in the plane, then it has at least Ω(n4) distinct
radial orderings.

For colored point sets the situation is far more intriguing, here we have been able to prove that such a
gap exists. Mainly that there are bi-colored sets of 2n points with Θ(n4) colored radial orderings and sets
with only Θ(n2). The best lower bound we have been able to provide is of Ω(n). We make the following
conjecture.

Conjecture 4.3 gcol(n) = Θ(n2).

Note that we used the assumption that n is even heavily in the proof of Theorem 3.4. In fact, it can
be shown that the number of colored radial orderings may increase to Θ(n3) if a red and a blue point are
added to the construction in the proof of Theorem 3.4. Also in the proof of Theorem 3.5 we relied on the
fact that the number of red points equals the number of blue points. It is possible to construct a set of n
red and n− 1 blue points such that a walk like the one described in Theorem 3.5 yields only one colored
radial ordering. It may be the case that the bounds given in Theorems 3.4 and 3.5 no longer hold when
either one of these two hypothesis is dropped.
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[4] I. Bárány and J. Matoušek. Simultaneous partitions of measures by k-fans. Discrete & Comput. Geom., 25:317–
334, 2001.

[5] S. Bereg. Equipartitions of measures by 2-fans. Discrete & Comput. Geom., 34:87–96, 2005.

[6] S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink. Generalizing ham-sandwich cuts to equitable subdivisions.
Discrete & Comput. Geom., 24:605–622, 2000.

[7] L. Deneen and G. Shute. Polygonizations of point sets in the plane. Discrete & Comput. Geom., 3(1):77–87,
1988.
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