A Sequent Calculus for a Modal Logic on Finite Data Trees

David Baelde 1 Simon Lunel 2 Sylvain Schmitz 1, 3
2 TEA - Tim, Events and Architectures
Inria Rennes – Bretagne Atlantique , IRISA-D4 - LANGAGE ET GÉNIE LOGICIEL
3 DAHU - Verification in databases
LSV - Laboratoire Spécification et Vérification [Cachan], ENS Cachan - École normale supérieure - Cachan, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8643
Abstract : We investigate the proof theory of a modal fragment of XPath equipped with data (in)equality tests over finite data trees, i.e. over finite unranked trees where nodes are labelled with both a symbol from a finite alphabet and a single data value from an infinite domain. We present a sound and complete sequent calculus for this logic, which yields the optimal PSPACE complexity bound for its validity problem.
Document type :
Conference papers
Complete list of metadatas

Cited literature [22 references]  Display  Hide  Download

https://hal.inria.fr/hal-01191172
Contributor : David Baelde <>
Submitted on : Monday, September 7, 2015 - 4:58:03 PM
Last modification on : Thursday, February 7, 2019 - 3:27:26 PM
Long-term archiving on : Wednesday, April 26, 2017 - 3:31:31 PM

File

main.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Identifiers

Citation

David Baelde, Simon Lunel, Sylvain Schmitz. A Sequent Calculus for a Modal Logic on Finite Data Trees. CSL 2016, Sep 2016, Marseille, France. pp.1--16, ⟨10.4230/LIPIcs.CSL.2016.32⟩. ⟨hal-01191172v2⟩

Share

Metrics

Record views

716

Files downloads

405