A. Ademokun, Y. Wu, V. Martin, R. Mitra, U. Sack et al., Vaccination-induced changes in human B-cell repertoire and pneumococcal IgM and IgA antibody at different ages, Aging Cell, vol.116, issue.6, pp.922-930, 2011.
DOI : 10.1111/j.1474-9726.2011.00732.x

B. Al-lazikani, A. M. Lesk, and C. Chothia, Standard conformations for the canonical structures of immunoglobulins, Journal of Molecular Biology, vol.273, issue.4, pp.927-948, 1997.
DOI : 10.1006/jmbi.1997.1354

J. Almagro, Identification of differences in the specificity-determining residues of antibodies that recognize antigens of different size: implications for the rational design of antibody repertoires, Journal of Molecular Recognition, vol.17, issue.2, pp.132-143, 2004.
DOI : 10.1002/jmr.659

R. Bahadur, P. Chakrabarti, F. Rodier, and J. Janin, A Dissection of Specific and Non-specific Protein???Protein Interfaces, Journal of Molecular Biology, vol.336, issue.4, pp.943-955, 2004.
DOI : 10.1016/j.jmb.2003.12.073

J. Benichou, J. Glanville, E. T. Luning-prak, R. Azran, T. C. Kuo et al., The Restricted DH Gene Reading Frame Usage in the Expressed Human Antibody Repertoire Is Selected Based upon its Amino Acid Content, The Journal of Immunology, vol.190, issue.11, pp.1905567-5577, 2013.
DOI : 10.4049/jimmunol.1201929

S. Birtalan, Y. Zhang, F. A. Fellouse, L. Shao, G. Schaefer et al., The Intrinsic Contributions of Tyrosine, Serine, Glycine and Arginine to the Affinity and Specificity of Antibodies, Journal of Molecular Biology, vol.377, issue.5, pp.1518-1528, 2008.
DOI : 10.1016/j.jmb.2008.01.093

Y. Bordon, Cow traps are structurally unique, Nature Reviews Immunology, vol.13, issue.471, p.2013

B. Bouvier, R. Grunberg, M. Nilgès, and F. Cazals, Shelling the Voronoi interface of protein-protein complexes reveals patterns of residue conservation, dynamics, and composition, Proteins: Structure, Function, and Bioinformatics, vol.2, issue.3, pp.677-692, 2009.
DOI : 10.1002/prot.22381

URL : https://hal.archives-ouvertes.fr/hal-00796032

J. D. Capra and J. M. Kehoe, Hypervariable Regions, Idiotypy, and the Antibody-Combining Site, Adv. Immunol, vol.20, issue.1, 1975.
DOI : 10.1016/S0065-2776(08)60205-9

R. Castro, L. Journeau, H. P. Pham, O. Bouchez, V. Giudicelli et al., Teleost Fish Mount Complex Clonal IgM and IgT Responses in Spleen upon Systemic Viral Infection, PLoS Pathogens, vol.29, issue.1, p.1003098, 2013.
DOI : 10.1371/journal.ppat.1003098.s014

URL : https://hal.archives-ouvertes.fr/hal-01190791

F. Cazals, Revisiting the Voronoi Description of Protein-Protein Interfaces: Algorithms, International Conference on Pattern Recognition in Bioinformatics, pp.419-430, 2010.
DOI : 10.1007/978-3-642-16001-1_36

URL : https://hal.archives-ouvertes.fr/hal-00796062

F. Cazals, F. Proust, R. Bahadur, and J. Janin, Revisiting the Voronoi description of protein-protein interfaces, Protein Science, vol.15, issue.9, pp.2082-2092, 2006.
DOI : 10.1110/ps.062245906

URL : https://hal.archives-ouvertes.fr/hal-00796062

A. Chailyan, P. Marcatili, D. Cirillo, and A. Tramontano, Structural repertoire of immunoglobulin ?? light chains, Proteins: Structure, Function, and Bioinformatics, vol.264, issue.Web Server issu, pp.1513-1524, 2011.
DOI : 10.1002/prot.22979

A. Chailyan, P. Marcatili, and A. Tramontano, The association of heavy and light chain variable domains in antibodies: implications for antigen specificity, FEBS Journal, vol.346, issue.16, pp.2782858-2866, 2011.
DOI : 10.1111/j.1742-4658.2011.08207.x

C. A. Chia-en, W. Chen, and M. K. Gilson, Ligand configurational entropy and protein binding, pp.1534-1539, 2007.

Y. Choi and C. M. Deane, Predicting antibody complementarity determining region structures without classification, Molecular BioSystems, vol.52, issue.1, pp.3327-3334, 2011.
DOI : 10.1128/mBio.00345-10

C. Chothia and A. M. Lesk, Canonical structures for the hypervariable regions of immunoglobulins, Journal of Molecular Biology, vol.196, issue.4, 1987.
DOI : 10.1016/0022-2836(87)90412-8

C. Chothia, A. M. Lesk, A. Tramontano, M. Levitt, S. J. Smith-gill et al., Conformations of immunoglobulin hypervariable regions, Nature, vol.342, issue.6252, pp.342877-883, 1989.
DOI : 10.1038/342877a0

L. A. Clark, S. Ganesan, S. Papp, and H. W. Van-vlijmen, Trends in Antibody Sequence Changes during the Somatic Hypermutation Process, The Journal of Immunology, vol.177, issue.1, pp.333-340, 2006.
DOI : 10.4049/jimmunol.177.1.333

R. Coico, G. V. Sunshine21-]-a, A. P. Collis, A. C. Brouwer, and . Martin, Immunology: a short course Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen, Journal of molecular biology, vol.325, issue.2, pp.337-354, 2003.

L. J. Cooper, A. R. Shikhman, D. Glass, D. Kangisser, M. W. Cunningham et al., Role of heavy chain constant domains in antibody-antigen interaction. apparent specificity differences among streptococcal IgG antibodies expressing identical variable domains, The Journal of Immunology, vol.150, issue.6, pp.2231-2242, 1993.

L. J. Cooper, D. Robertson, R. Granzow, and N. S. Greenspan, Variable domain-identical antibodies exhibit IgG subclass-related differences in affinity and kinetic constants as determined by surface plasmon resonance, Molecular Immunology, vol.31, issue.8, pp.31577-584, 1994.
DOI : 10.1016/0161-5890(94)90165-1

J. Dunitz, Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions, Chemistry & Biology, vol.2, issue.11, pp.709-712, 1995.
DOI : 10.1016/1074-5521(95)90097-7

F. Ehrenmann, Q. Kaas, and M. Lefranc, IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF, Nucleic Acids Research, vol.38, issue.Database, pp.301-307, 2010.
DOI : 10.1093/nar/gkp946

F. A. Fellouse, P. A. Barthelemy, R. F. Kelley, and S. S. Sidhu, Tyrosine Plays a Dominant Functional Role in the Paratope of a Synthetic Antibody Derived from a Four Amino Acid Code, Journal of Molecular Biology, vol.357, issue.1, pp.100-114, 2006.
DOI : 10.1016/j.jmb.2005.11.092

W. J. Finlay and J. C. Almagro, Natural and man-made V-gene repertoires for antibody discovery, Frontiers in Immunology, vol.3, 2012.
DOI : 10.3389/fimmu.2012.00342

M. Gerstein and F. M. Richards, Protein geometry: volumes, areas and distances, The international tables for crystallography, pp.531-539, 2001.
DOI : 10.1107/97809553602060000885

L. W. Guddat, L. Shan, Z. Fan, K. N. Andersen, R. Rosauer et al., Intramolecular signaling upon complexation, The FASEB journal, vol.9, issue.1, pp.101-106, 1995.

I. Ivanov, J. Link, G. Ippolito, and H. H. Schroeder, Constraints on hydropathicity and sequence composition of HCDR3 are conserved across evolution. The antibodies, pp.43-67, 2002.

J. Janin, A minimal model of protein-protein binding affinities, Protein Science, vol.2, issue.12, pp.1813-1817, 2014.
DOI : 10.1002/pro.2560

J. Janin, R. P. Bahadur, and P. Chakrabarti, Protein???protein interaction and quaternary structure, Quarterly Reviews of Biophysics, vol.31, issue.02, pp.133-180, 2008.
DOI : 10.1073/pnas.93.19.10167

S. Jones and J. Thornton, Principles of protein-protein interactions., Proceedings of the National Academy of Sciences, vol.93, issue.1, pp.13-20, 1996.
DOI : 10.1073/pnas.93.1.13

P. L. Kastritis, I. H. Moal, H. Hwang, Z. Weng, P. A. Bates et al., A structure-based benchmark for protein-protein binding affinity, Protein Science, vol.3, issue.3, pp.482-491, 2011.
DOI : 10.1002/pro.580

P. L. Kastritis, J. P. Rodrigues, G. E. Folkers, R. Boelens, and A. M. Bonvin, Proteins Feel More Than They See: Fine-Tuning of Binding Affinity by Properties of the Non-Interacting Surface, Journal of Molecular Biology, vol.426, issue.14, pp.2632-2652, 2014.
DOI : 10.1016/j.jmb.2014.04.017

O. V. Koliasnikov, M. O. Kiral, V. G. Grigorenko, and A. M. Egorov, ANTIBODY CDR H3 MODELING RULES: EXTENSION FOR THE CASE OF ABSENCE OF ARG H94 AND ASP H101, Journal of Bioinformatics and Computational Biology, vol.04, issue.02, pp.415-424, 2006.
DOI : 10.1142/S0219720006001874

D. Kuroda, H. Shirai, M. Kobori, and H. Nakamura, Structural classification of CDR-H3 revisited: A lesson in antibody modeling, Proteins: Structure, Function, and Bioinformatics, vol.23, issue.Database issue, pp.608-620, 2008.
DOI : 10.1002/prot.22087

D. Kuroda, H. Shirai, M. Kobori, and H. Nakamura, Systematic classification of CDR-L3 in antibodies: Implications of the light chain subtypes and the VL-VH interface, Proteins: Structure, Function, and Bioinformatics, vol.94, issue.Database issue, pp.139-146, 2009.
DOI : 10.1002/prot.22230

N. F. Landolfi, A. B. Thakur, H. Fu, M. Vásquez, C. Queen et al., The Integrity of the Ball-and-Socket Joint Between V and C Domains Is Essential for Complete Activity of a Humanized Antibody, The Journal of Immunology, vol.166, issue.3, pp.1748-1754, 2001.
DOI : 10.4049/jimmunol.166.3.1748

M. Lee, P. Lloyd, X. Zhang, J. M. Schallhorn, K. Sugimoto et al., Shapes of Antibody Binding Sites:?? Qualitative and Quantitative Analyses Based on a Geomorphic Classification Scheme, The Journal of Organic Chemistry, vol.71, issue.14, pp.715082-5092, 2006.
DOI : 10.1021/jo052659z

M. Lefranc, Immunoglobulin (IG) and T cell receptor (TR) genes: IMGT® and the birth and rise of immunoinformatics, Frontiers in Immunology, vol.5, p.22, 2014.

M. Lefranc and G. Lefranc, The immunoglobulin FactsBook, 2001.

M. Lefranc, C. Pommié, M. Ruiz, V. Giudicelli, E. Foulquier et al., IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains, Developmental & Comparative Immunology, vol.27, issue.1, pp.55-77, 2003.
DOI : 10.1016/S0145-305X(02)00039-3

A. Lesk and C. Chothia, Elbow motion in the immunoglobulins involves a molecular balland-socket joint, Nature, vol.8, issue.335, pp.188-90, 1988.

S. M. Lippow, K. D. Wittrup, and B. Tidor, Computational design of antibody-affinity improvement beyond in vivo maturation, Nature Biotechnology, vol.103, issue.10, pp.1171-1176, 2007.
DOI : 10.1038/nbt1336

L. Lo-conte, C. Chothia, and J. Janin, The atomic structure of protein-protein recognition sites11Edited by A. R. Fersht, Journal of Molecular Biology, vol.285, issue.5, pp.2177-2198, 1999.
DOI : 10.1006/jmbi.1998.2439

R. M. Maccallum, A. C. Martin, and J. M. Thornton, Antibody-antigen Interactions: Contact Analysis and Binding Site Topography, Journal of Molecular Biology, vol.262, issue.5, pp.732-745, 1996.
DOI : 10.1006/jmbi.1996.0548

N. Malod-dognin, A. Bansal, and F. Cazals, Characterizing the morphology of protein binding patches, Proteins: Structure, Function, and Bioinformatics, vol.42, issue.suppl 2, pp.2652-2665, 2012.
DOI : 10.1002/prot.24144

URL : https://hal.archives-ouvertes.fr/hal-00849793

V. Manivel, N. C. Sahoo, D. M. Salunke, and K. V. Rao, Maturation of an Antibody Response Is Governed by Modulations in Flexibility of the Antigen-Combining Site, Immunity, vol.13, issue.5, pp.611-620, 2000.
DOI : 10.1016/S1074-7613(00)00061-3

S. Marillet, P. Boudinot, F. Cazals, N. Mccloskey, . Turner et al., High resolution crystal structures leverage protein binding affinity predictions Under revision Human constant regions influence the antibody binding characteristics of mouse-human chimeric IgG subclasses, Immunology, vol.88, issue.2, pp.169-173, 1996.

G. Meng, N. Arkus, M. P. Brenner, and V. N. Manoharan, The Free-Energy Landscape of Clusters of Attractive Hard Spheres, Science, vol.327, issue.5965, pp.327560-563, 2010.
DOI : 10.1126/science.1181263

V. Morea, A. Tramontano, M. Rustici, C. Chothia, and A. M. Lesk, Conformations of the third hypervariable region in the VH domain of immunoglobulins, Journal of Molecular Biology, vol.275, issue.2, pp.269-294, 1998.
DOI : 10.1006/jmbi.1997.1442

B. North, A. Lehmann, and R. L. Dunbrack, A New Clustering of Antibody CDR Loop Conformations, Journal of Molecular Biology, vol.406, issue.2, pp.228-256, 2011.
DOI : 10.1016/j.jmb.2010.10.030

W. E. Paul, Fundamental Immunology, Lippincott Williams and Wilkins, Wolters and Kluwer, 2013.

O. Pritsch, G. Hudry-clergeon, M. Buckle, Y. Pétillot, J. Bouvet et al., Can immunoglobulin CH1 constant region domain modulate antigen binding affinity of antibodies, Journal of Clinical Investigation, issue.10, p.982235, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00277598

O. Pritsch, C. Magnac, G. Dumas, J. Bouvet, P. Alzari et al., Can isotype switch modulate antigen-binding affinity and influence clonal selection? European journal of immunology, pp.3387-3395, 2000.

G. Raghunathan, J. Smart, J. Williams, and J. Almagro, Antigen-binding site anatomy and somatic mutations in antibodies that recognize different types of antigens, Journal of Molecular Recognition, vol.145, issue.3, pp.103-113, 2012.
DOI : 10.1002/jmr.2158

D. Rajamani, S. Thiel, S. Vajda, and C. J. Camacho, Anchor residues in protein-protein interactions, Proceedings of the National Academy of Sciences, vol.101, issue.31, pp.11287-11292, 2004.
DOI : 10.1073/pnas.0401942101

A. Schmidt, H. Xu, A. Khan, T. O. Donnell, S. Khurana et al., Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody, Proceedings of the National Academy of Sciences, vol.110, issue.1, pp.264-269, 2013.
DOI : 10.1073/pnas.1218256109

H. W. Schroeder, M. Zemlin, M. Khass, H. H. Nguyen, and R. L. Schelonka, Genetic Control of DH Reading Frame and Its Effect on B-Cell Development and Antigen-Specifc Antibody Production, Critical Reviews??? in Immunology, vol.30, issue.4, pp.327-344, 2010.
DOI : 10.1615/CritRevImmunol.v30.i4.20

H. Shirai, A. Kidera, and H. Nakamura, Structural classification of CDR-H3 in antibodies, FEBS Letters, vol.92, issue.1-2, pp.1-8, 1996.
DOI : 10.1016/S0014-5793(96)01252-5

H. Shirai, C. Prades, R. Vita, P. Marcatili, B. Popovic et al., Antibody informatics for drug discovery, BBA)-Proteins and Proteomics, pp.18442002-2015, 2014.
DOI : 10.1016/j.bbapap.2014.07.006

URL : https://hal.archives-ouvertes.fr/hal-01088585

J. Shirai, A. Kidera, and H. Nakamura, H3-rules: identification of CDR-H3 structures in antibodies, FEBS Letters, vol.16, issue.1-2, pp.188-197, 1999.
DOI : 10.1016/S0014-5793(99)00821-2

A. Six, M. E. Mariotti-ferrandiz, W. Chaara, S. Magadan, H. Pham et al., The Past, Present, and Future of Immune Repertoire Biology ??? The Rise of Next-Generation Repertoire Analysis, Frontiers in Immunology, vol.4, 2013.
DOI : 10.3389/fimmu.2013.00413

URL : https://hal.archives-ouvertes.fr/hal-00937344

R. L. Stanfield, A. Zemla, I. Wilson, and B. Rupp, Antibody Elbow Angles are Influenced by their Light Chain Class, Journal of Molecular Biology, vol.357, issue.5, pp.1566-1574, 2006.
DOI : 10.1016/j.jmb.2006.01.023

C. A. Thomson, K. Q. Little, D. C. Reason, and J. W. Schrader, Somatic Diversity in CDR3 Loops Allows Single V-Genes To Encode Innate Immunological Memories for Multiple Pathogens, The Journal of Immunology, vol.186, issue.4, pp.2291-2298, 2011.
DOI : 10.4049/jimmunol.0904092

S. Tonegawa, Somatic generation of antibody diversity, Nature, issue.5909, pp.302575-581, 1983.

M. Torres, N. Fernández-fuentes, A. Fiser, and A. Casadevall, The Immunoglobulin Heavy Chain Constant Region Affects Kinetic and Thermodynamic Parameters of Antibody Variable Region Interactions with Antigen, Journal of Biological Chemistry, vol.282, issue.18, pp.13917-13927, 2007.
DOI : 10.1074/jbc.M700661200

E. Vargas-madrazo, F. Lara-ochoa, and J. C. Almagro, Canonical Structure Repertoire of the Antigen-binding Site of Immunoglobulins Suggests Strong Geometrical Restrictions Associated to the Mechanism of Immune Recognition, Journal of Molecular Biology, vol.254, issue.3, pp.497-504, 1995.
DOI : 10.1006/jmbi.1995.0633

T. T. Wu and E. A. Kabat, AN ANALYSIS OF THE SEQUENCES OF THE VARIABLE REGIONS OF BENCE JONES PROTEINS AND MYELOMA LIGHT CHAINS AND THEIR IMPLICATIONS FOR ANTIBODY COMPLEMENTARITY, Journal of Experimental Medicine, vol.132, issue.2, pp.211-250, 1970.
DOI : 10.1084/jem.132.2.211

J. Xu and M. M. Davis, Diversity in the CDR3 Region of VH Is Sufficient for Most Antibody Specificities, Immunity, vol.13, issue.1, pp.37-45, 2000.
DOI : 10.1016/S1074-7613(00)00006-6