MOLLIFICATION IN STRONGLY LIPSCHITZ DOMAINS WITH APPLICATION TO CONTINUOUS AND DISCRETE DE RHAM COMPLEX

Abstract : We construct mollification operators in strongly Lipschitz domains that do not invoke non-trivial extensions, are L p stable for any real number p ∈ [1, ∞], and commute with the differential operators ∇, ∇×, and ∇·. We also construct mollification operators satisfying boundary conditions and use them to characterize the kernel of traces related to the tangential and normal trace of vector fields. We use the mollification operators to build projection operators onto general H 1-, H(curl)-and H(div)-conforming finite element spaces, with and without homogeneous boundary conditions. These operators commute with the differential operators ∇, ∇×, and ∇·, are L p-stable, and have optimal approximation properties on smooth functions.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01192941
Contributeur : Jean-Luc Guermond <>
Soumis le : vendredi 4 septembre 2015 - 04:15:44
Dernière modification le : lundi 21 mars 2016 - 17:39:57
Document(s) archivé(s) le : samedi 5 décembre 2015 - 11:16:46

Fichier

smoothing.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01192941, version 1

Collections

Citation

Alexandre Ern, Jean-Luc Guermond. MOLLIFICATION IN STRONGLY LIPSCHITZ DOMAINS WITH APPLICATION TO CONTINUOUS AND DISCRETE DE RHAM COMPLEX . 2015. 〈hal-01192941〉

Partager

Métriques

Consultations de la notice

140

Téléchargements de fichiers

172