Mollification in strongly Lipschitz domains with application to continuous and discrete de rham complexes

Abstract : We construct mollification operators in strongly Lipschitz domains that do not invoke non-trivial extensions, are L p stable for any real number p ∈ [1, ∞], and commute with the differential operators ∇, ∇×, and ∇·. We also construct mollification operators satisfying boundary conditions and use them to characterize the kernel of traces related to the tangential and normal trace of vector fields. We use the mollification operators to build projection operators onto general H 1-, H(curl)-and H(div)-conforming finite element spaces, with and without homogeneous boundary conditions. These operators commute with the differential operators ∇, ∇×, and ∇·, are L p-stable, and have optimal approximation properties on smooth functions.
Type de document :
Article dans une revue
Computational Methods in Applied Mathematics, De Gruyter, 2016, 16 (1), pp.51-75. 〈10.1515/cmam-2015-0034〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01192941
Contributeur : Alexandre Ern <>
Soumis le : vendredi 6 avril 2018 - 13:01:55
Dernière modification le : jeudi 26 avril 2018 - 10:28:13

Fichier

smoothing.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alexandre Ern, Jean-Luc Guermond. Mollification in strongly Lipschitz domains with application to continuous and discrete de rham complexes. Computational Methods in Applied Mathematics, De Gruyter, 2016, 16 (1), pp.51-75. 〈10.1515/cmam-2015-0034〉. 〈hal-01192941v2〉

Partager

Métriques

Consultations de la notice

156

Téléchargements de fichiers

64