
HAL Id: hal-01193178
https://hal.inria.fr/hal-01193178

Submitted on 13 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting Clustered Microarchitecture for Future
Superscalar Cores: A Case for Wide Issue Clusters

Pierre Michaud, Andrea Mondelli, André Seznec

To cite this version:
Pierre Michaud, Andrea Mondelli, André Seznec. Revisiting Clustered Microarchitecture for Future
Superscalar Cores: A Case for Wide Issue Clusters. ACM Transactions on Architecture and Code
Optimization (TACO) , ACM, 2015, 13 (3), pp.22. <10.1145/2800787>. <hal-01193178>

https://hal.inria.fr/hal-01193178
https://hal.archives-ouvertes.fr

Revisiting clustered microarchitecture for future superscalar cores: a
case for wide-issue clusters

PIERRE MICHAUD, IRISA/Inria
ANDREA MONDELLI, IRISA/Inria
ANDRÉ SEZNEC, IRISA/Inria

During the last 10 years, the clock frequency of high-end superscalar processors did not increase. Perfor-
mance keeps growing mainly by integrating more cores on the same chip and by introducing new instruc-
tion set extensions. However, this benefits only some applications and requires rewriting and/or recompiling
these applications. A more general way to accelerate applications is to increase the IPC, the number of in-
structions executed per cycle. Though the focus of academic microarchitecture research moved away from
IPC techniques, the IPC of commercial processors was continuously improved during these years.

We argue that some of the benefits of technology scaling should be used to raise the IPC of future su-
perscalar cores further. Starting from microarchitecture parameters similar to recent commercial high-end
cores, we show that an effective way to increase the IPC is to allow the out-of-order engine to issue more
micro-ops per cycle. But this must be done without impacting the clock cycle. We propose to combine two
techniques: clustering and register write specialization. Past research on clustered microarchitectures fo-
cused on narrow issue clusters, as the emphasis at that time was on allowing high clock frequencies.

Instead, in this study, we consider wide issue clusters, with the goal of increasing the IPC under a constant
clock frequency. We show that, on a wide-issue dual cluster, a very simple steering policy that sends 64
consecutive instructions to the same cluster, the next 64 instructions to the other cluster, and so forth,
permits tolerating an inter-cluster delay of 3 cycles. We also propose a method for decreasing the energy cost
of sending results from one cluster to the other cluster.

1. INTRODUCTION
For several decades, the clock frequency of general purpose processors was growing
thanks to faster transistors and microarchitectures with deeper pipelines. However,
about 10 years ago, technology hit leakage power and temperature walls. Since then,
the clock frequency of high-end processors did not increase. Instead of increasing the
clock frequency, processor makers integrated more cores on a single chip, enlarged the
cache hierarchy and improved energy efficiency.

Putting more cores on a single chip has increased the total chip throughput and ben-
efits some applications with thread-level parallelism. However, most applications have
low thread-level parallelism [Blake et al. 2010]. So having more cores is not sufficient.
It is important also to accelerate individual threads.

If the clock frequency remains constant, the only possibility left for higher single-
thread performance in future processors is to exploit more instruction-level parallelism
(ILP). Certain microarchitecture improvements (e.g., better branch predictor) simulta-
neously improve performance and energy efficiency. However, in general, exploiting
more ILP has a cost in silicon area, energy consumption, design effort, etc. Therefore,
the microarchitecture is modified slowly, incrementally, taking advantage of technol-
ogy scaling. And indeed, processor makers have made continuous efforts to exploit
more ILP, with better branch predictors, better data prefetchers, larger instruction
windows, more physical registers, and so forth. For example, the Intel Nehalem mi-
croarchitecture can issue 6 micro-ops per cycle from a 36-entry issue buffer, while the
more recent Intel Haswell microarchitecture can issue 8 micro-ops per cycle from a
60-entry issue buffer [Intel 2014].

This work is partially supported by the European Research Council Advanced Grant DAL No 267175.
Author’s address: P. Michaud, A. Mondelli, A. Seznec, IRISA/Inria, Campus de Beaulieu, 263 Avenue du
Général Leclerc, 35042 Rennes Cedex, France.

2

In this paper, we try to depict what future superscalar cores may look like in 10
years. We argue that the instruction window and the issue width can be augmented
by combining clustering [Lowney et al. 1993; Kessler 1999; Palacharla et al. 1997] and
register write specialization [Canal et al. 2000; Zyuban and Kogge 2001; Seznec et al.
2002b].

A major difference with past research on clustered microarchitecture is that we as-
sume wide issue clusters (≥ 8-issue), whereas past research mostly focused on narrow
issue clusters (≤ 4-issue). Going from narrow issue to wide issue clusters is not just a
quantitative change, it has a qualitative impact on the clustering problem, in partic-
ular on the steering policy. Past research on steering policies showed that minimizing
inter-cluster communications while achieving good cluster load balancing is a diffi-
cult problem. One of the conclusions of a decade of research on steering policies was
that simple steering policies such as Mod-3 [Baniasadi and Moshovos 2000] generate
significant IPC loss, while steering policies minimizing IPC loss are too complex for
hardware-only implementations [Salverda and Zilles 2005; Cai et al. 2008].

Our study shows that considering wide issue instead of narrow issue clusters has
a dramatic impact on the performance of Mod-N, one of the simplest steering policy.
Mod-N sends N consecutive instructions to a cluster, the next N instructions to another
cluster, and so forth in round-robin fashion [Baniasadi and Moshovos 2000]. Baniasadi
and Moshovos found that, on narrow issue clusters, the optimal value of N is generally
very small, advocating a Mod-3 policy. To the best of our knowledge, after Baniasadi
and Moshovos’s paper, nobody has considered Mod-N policies other than Mod-3 .

We find that, with wide issue clusters, if the instruction window is large enough and
considering a realistic inter-cluster delay, the optimal value of N is much larger than
three, typically several tens. Owing to data-dependence locality, a Mod-64 policy leads
to much fewer inter-cluster communications than a Mod-3 policy. As a result, Mod-64
tolerates greater inter-cluster delays than Mod-3. Moreover, about 40% of the values
produced by a cluster do not need to be forwarded to the other cluster, which permits
reducing the energy spent in inter-cluster communications.

This paper is organized as follows. Section 2 argues for using some of the benefit of
technology scaling for increasing single-thread IPC. Section 3 discusses some known
solutions for enlarging the issue width and the instruction window. We describe our
simulation set-up in Section 4. In Section 5, we explore the impact on IPC of various
microarchitecture parameters, and we show that, by doubling simultaneously all the
parameters of a modern high-end core, the IPC of SPEC INT benchmarks could be in-
creased by 25% on average, that of SPEC FP by 40%. Section 6 studies the impact on
IPC of clustering the out-of-order engine. We find that significant IPC gains are still
possible, despite the inter-cluster delay, provided the instruction window parameters
are doubled. We show that a Mod-64 steering policy tolerates inter-cluster delays of a
few cycles. Section 7 explains how the energy consumption of inter-cluster communica-
tions can be reduced by detecting micro-ops whose results are not needed by the other
cluster. We discuss related work in Section 8, and conclude this study in Section 9.

2. A CASE FOR INCREASING SINGLE-THREAD IPC
If the clock frequency remains constant, the only possibility left for increasing the
single-thread performance of future processors is to exploit more ILP.

Table I shows three possible scenarios for exploiting one step of technology scaling
under constant clock frequency and constant voltage1, assuming identical cores. The

1High leakage currents make difficult to scale down the voltage without severely hurting transistor speed.
This is one of the reasons for voltage scaling down only very slowly [ITRS 2013]. We conservatively assume
a constant voltage.

3

Table I. Three possible scenarios for exploiting one step of tech-
nology scaling, assuming constant frequency, constant voltage
and homogeneous cores

same core µarch. more complex
core µarch.

dimensions x,y,z × 1√
2

× 1√
2

× 1√
2

frequency ×1 ×1 ×1
voltage ×1 ×1 ×1

core area × 1
2

× 1
2

× 1
2
γ

number of cores ×2 ×
√
2 ×1

core IPC ×1 ×1 ×α
dynamic EPI × 1√

2
× 1√

2
1√
2
× β

total power (cores) ×
√
2 ×1 × 1√

2
αβ

power density ×
√
2 ×

√
2 ×

√
2αβ

γ

core power, core IPC, EPI (energy per instruction) and clock frequency are related as
follows:

core power = EPI× IPC× frequency

If voltage remains constant, technology scaling decreases the switching energy 1
2CV

2

only by reducing capacitances C, i.e., roughly as 1√
2

[Dennard et al. 1974]. Hence if we
consider a fixed core microarchitecture, the silicon footprint reduction from technology
scaling means roughly a 1√

2
reduction of the dynamic EPI.

The second and third column in Table I assume a fixed core microarchitecture. The
first scenario (second column) corresponds to doubling the number of cores on each new
technology generation, which technology scaling makes possible in a constant silicon
area. However, this scenario leads to an increase of the total power (this is the dark
silicon problem [Esmaeilzadeh et al. 2011]).

The second scenario (third column) corresponds to increasing the number of cores
but more slowly than what technology scaling permits, so as to keep the total power
constant. Power density increases but remains inversely proportional to the circuit di-
mensions, hence hot spots temperature remains constant (see formula (1) in appendix).

The third scenario (fourth column of Table I) shows a situation where the number of
cores is kept constant, but single-thread performance is increased with a more complex
core microarchitecture2. For example, a 10% increase of core IPC (α = 1.10) which is
obtained at the cost of 28% more EPI (β = 1.28)3 results in a constant total power and
10% overall EPI reduction after scaling down the feature size.

The main point is that the core microarchitecture complexity can be increased
progressively, over several technology generations, with the EPI globally decreasing
thanks to technology scaling.

3. SOLUTIONS FOR WIDE-ISSUE CORES
We show in Section 5 that significant IPC gains can be obtained by increasing the
issue width, the front-end width and the instruction window size. We describe in this

2The second and third scenario of Table I do not exclude each other. They can be used at different tech-
nology generations. Moreover, keeping the number of cores constant does not preclude introducing more
simultaneous multithreading (SMT) contexts.
3Making the core more complex does not necessarily increase the EPI (factor β). A large fraction of the total
CPU power is static power from leakage currents. And a large fraction of this static power is gateable on
modern processors, i.e., can be turned off once a task is finished. Increasing the IPC makes the execution
time shorter, and may reduce static energy consumption [Czechowski et al. 2014].

4

section some solutions that are already known and that we believe are realistic, with
an emphasis on clustering.

3.1. Clustering
Clustering was proposed in the 1990’s as a solution for reducing the clock cycle of
superscalar processors [Palacharla et al. 1997; Farkas et al. 1997]. The basic idea is
to partition the execution units (EU) into clusters, such that the output of one EU
can be used as input by any other EU in the cluster in the next clock cycle through
a local bypass network [González et al. 2011]. Clustering can also be applied to the
issue buffer (one issue buffer partition per cluster). Hence clustering is a solution to
two of the most important frequency bottlenecks in the out-of-order engine: the bypass
network and the issue buffer. The price to pay is that communications between clusters
require an extra delay, which may impact the IPC.

A natural form of clustering, which has been used in several superscalar processors,
is to have an integer cluster and a floating-point cluster. This form of clustering does
not generate intercluster communications, and the term “clustered microarchitecture”
is mostly applied to cases where intercluster communications are frequent.

Clustering introduces a degree of freedom for instructions that can execute on sev-
eral clusters. Choosing on which cluster to execute an instruction is called steering.
Microarchitectures such as the DEC Alpha 21264 [Farrell and Fischer 1998; Kessler
1999] that cluster the EUs but not the scheduler do the steering at instruction is-
sue (execution-driven steering [Palacharla et al. 1997]). Microarchitectures such as the
IBM POWER7 [Sinharoy et al. 2011] that cluster both the EUs and the scheduler
do the steering before inserting the instruction into the issue buffer (dispatch-driven
steering [Palacharla et al. 1997]).

Execution-driven steering does a good job at mitigating the impact of the inter-
cluster delay, as the scheduler can send an instruction to the cluster where it can
execute sooner [Palacharla et al. 1997]. However, execution-driven steering limits the
size of the issue buffer, not only because the issue buffer does not benefit from cluster-
ing (unlike the bypass network), but also because postponing the steering until issue
makes it part of the scheduling loop, which impacts the clock frequency.

In this study, we consider only dispatch-driven steering, i.e., the issue buffer is
clustered just like the EUs and the bypass network, and the steering is done before the
instruction enters the issue buffer. An example of dispatch-driven clustered scheme is
shown in Figure 1.

We assume symmetric clusters, i.e., the two clusters are identical and can execute all
micro-ops. An advantage of symmetric clustering is that in simultaneous multithread-
ing (SMT) mode, the clusters can execute distinct threads and the inter-cluster bypass
network can be clock-gated.

3.2. Issue buffer
Clustering the issue buffer like the EUs (as in the IBM POWER7) permits increasing
the total issue buffer capacity without impacting the clock cycle: the select operation
is done independently on each issue buffer partition, and the wake-up operation is
pipelined between the partitions, taking advantage of the inter-cluster delay [Goshima
et al. 2001].

3.3. Steering
Ideally, one wants both a good cluster load balancing and limited inter-cluster commu-
nications. However, these two goals generally contradict each other. The main problem
is to achieve a good trade-off between load balancing and inter-cluster communications
while still being able to steer several instructions simultaneously.

5

L1 data cache

cluster 0 cluster 1

issue buffer

partition 1

register renaming

steering

issue buffer

partition 0

Fig. 1. Example of 2-cluster OoO engine, assuming dispatch-driven steering and register write specializa-
tion.

Some authors proposed steering policies taking into account register dependencies
[Palacharla et al. 1997; Canal et al. 1999; Canal et al. 2000; Baniasadi and Moshovos
2000; González et al. 2004]. However, these dependency-based steering policies are
complex and make steering a clock frequency bottleneck, as the steering bandwidth
must match the register renaming bandwidth.

Therefore we consider a very simple steering policy: Mod-N. Mod-N steers N instruc-
tions to a cluster, the next N instructions to the next cluster, and so on in round robin
fashion [Baniasadi and Moshovos 2000]. Mod-N is simple enough to be implemented
in hardware.

3.4. Write specialization
Executing more instructions per cycle requires to increase the number of read and
write ports on the register file. However, the area and access energy of an SRAM array
increases quickly with the number of ports, especially with write ports [Seznec et al.
2002b].

A simple solution to increase the number of read ports is to duplicate the physi-
cal register file, as in the Alpha 21264 [Kessler 1999]. However this does not solve
the problem for write ports. Register Write Specialization has been proposed to solve
this problem [Seznec et al. 2002b]. For a clustered superscalar OoO engine, register
write specialization means that each cluster writes in a subset of the physical regis-
ters [Canal et al. 2000; Zyuban and Kogge 2001; Seznec et al. 2002b].

As an example, let us consider a single-cluster OoO engine using 128 physical regis-
ters with 4 write ports and 8 read ports. A dual-cluster OoO engine has the double total
issue width. We apply register write specialization, keeping the same total number of
physical registers: partition 0 contains physical registers 0 to 63 and can be written
only by cluster 0, partition 1 contains physical registers 64 to 127 and can be written
only by cluster 1. To allow reading any register on both clusters, each cluster has a mir-
ror copy of the register partition of the other cluster. That is, each cluster has 2 banks,
each bank holding half of the registers and having 4 write ports and 8 read ports. If we
keep the total number of physical registers constant, the area of the per-cluster regis-

6

mux 1

ALU

mux 3a

EXEC

from other

from other
cluster

result bus

result buses in
same cluster

mux 3b

mux 2a mux 2b

partition 0 partition 1
physical register physical register

physical register

partition 0

physical register

partition 1

READ1

READ2

WRITE1

WRITE2

Fig. 2. Example of bypass network implementation for a dual-cluster OoO engine, assuming 2 register
read/write cycles and register write specialization (a single execution port and single source operand are
shown, comparators are not shown). The first bypass level (MUX 1) is not impacted by clustering, but this
costs an extra cycle of inter-cluster delay.

ter file is roughly the same in the single-cluster and dual-cluster configurations. See
Seznec et al. for more details [Seznec et al. 2002b].

Write specialization implies that steering should be finished before register renam-
ing. This means that a complex steering policy cannot be completely overlapped with
register renaming and would probably require extra pipeline stages for steering. How-
ever, Mod-N steering is very simple and can be done while the rename table is being
read.

3.5. Bypass network and inter-cluster delay
Increasing the issue width increases the bypass network complexity, which may im-
pact the clock cycle. Clustering solves this problem by making the bypass network
hierarchical. This is illustrated in Figure 2 on an example of bypass network imple-
mentation for a dual-cluster OoO engine, assuming register write specialization. In
this example, the first (i.e., most critical) bypass level (mux 1) is not impacted by clus-
tering. However this costs an extra cycle of inter-cluster delay. Moreover, the physical
distance between clusters requires pipelining the result buses to decrease RC delays.
Hence a bypass network such as the one depicted in Figure 2 entails at least 2 cycles
of inter-cluster delay, one (or more) from pipelining the result buses and one from iso-
lating the first bypass level. Note that there are several possible implementations for a
bypass network4. In our simulations, we consider inter-cluster delays of up to 3 cycles.

4Data movements in a pipelined bypass network consume a lot of power. This can be avoided with a CAM-
like implementation of the bypass network [Curtis et al. 1999; Preston et al. 2002]

7

3.6. Level-one data cache
Increasing the issue width also means increasing the L1 data cache load/store band-
width. Several solutions are possible for increasing the load/store bandwidth. Recent
high-end processors use banking to provide the adequate bandwidth. Banking leads to
the possibility of conflicts when several loads/stores issued simultaneously access the
same bank. Several banking schemes are possible. In this study we assume that the 8
words in a 64-byte cache line are stored separately in 8 data-array banks, like in the
Intel Sandy Bridge [Intel 2014].

3.7. Front-end bandwidth
Executing more instructions per cycle requires fetching more instructions per cycle. A
possible way to increase the front-end bandwidth is to predict and fetch two basic block
per cycles instead of one, as in the Alpha EV8 [Seznec et al. 2002a], and scale instruc-
tion decode accordingly. However, decode itself may be a microarchitecture bottleneck
for CISC instructions sets such as Intel x86. A trace cache (aka decoded I-cache or
micro-op cache in the Intel Sandy Bridge and Haswell microarchitectures [Intel 2014])
addresses this issue. A trace cache stores in traces micro-ops that are likely to be exe-
cuted consecutively in sequential order [Rotenberg et al. 1996].

A trace cache is also a solution to the register renaming bandwidth problem. When
creating a trace, intra-trace dependencies can be determined and this information can
be stored along with the trace. The number of read and write ports of the rename
table can be reduced: each read-after-write or read-after-read occurrence within a trace
saves one read port on the rename table, and each write-after-write occurrence saves
one write port [Vajapeyam and Mitra 1997]. The number of read and write ports of the
rename table is part of the trace format definition.

3.8. Load/store queues
The load queue is for guaranteeing a correct execution while allowing loads to exe-
cute speculatively before older independent stores. The load queue is searched when
a store retires. When there is a load queue, the store queue is mostly for prevent-
ing memory dependencies to hurt performance. The store queue is searched when a
load executes. Enlarging the instruction window to exploit more ILP may require the
load/store queues to be enlarged too. However, conventional load/store queues are fully
associative structures which cannot be enlarged straightforwardly. Clustering the OoO
engine does not solve the load/store queues scalability problem. Specific solutions may
be needed (e.g., [Baugh and Zilles 2006; Cain and Lipasti 2004; Sha et al. 2005; Sub-
ramaniam and Loh 2006]).

For this study, we ignore the problem and we assume that it is possible to enlarge
load/store queues without impacting the clock cycle or the load latency.

4. SIMULATION SETUP
The microarchitecture simulator used for this study is an in-house simulator based on
Pin [Luk et al. 2005]. Operating system activity is not simulated The simulator is trace
driven and does not simulate the effects of wrong-path instructions5. We simulate the
64-bit x86 instruction set. Instructions are split by the microarchitecture into micro-
ops. For simplicity, the simulator defines 18 micro-op categories.

5We believe that our general conclusions are largely independent from wrong path effects. Modern out-of-
order schedulers prioritize older instructions (in program order) when selecting among ready ones [Preston
et al. 2002; Sinharoy et al. 2011; Golden et al. 2011], and correct-path instructions are generally not delayed
by wrong-path ones.

8

Table II. Baseline microarchitecture

clock frequency 3.5 GHz
branch predictor 31KB TAGE & 6KB ITTAGE [Seznec and Michaud 2006]
I-fetch 1 cache line, 1 taken branch per cycle
decode 8 instructions / cycle
rename 12 micro-ops / cycle
issue (micro-ops) 4 INT, 2 FP, 3 address, 2 store data (cf. Figure 3)
load issue 2 loads / cycle
retire 12 micro-ops / cycle
reorder buffer (ROB) 256 micro-ops
physical registers 128 INT, 128 FP
issue buffers 60 INT micro-ops, 60 FP micro-ops
load queue 72 loads
store queue 42 stores
branch misp. penalty 12 cycles (minimum), redirect I-fetch at branch execution
cache line 64 bytes
MSHRs 32 block requests
DL1 cache 32KB, 8-way assoc., latency 3 cycles, 8 banks, 2 reads & 1 write / cycle
IL1 cache 32KB, 8-way assoc.
L2 cache 512KB, 8-way assoc., latency 11 cycles
L3 cache 8MB, 16-way assoc., latency 21 cycles
memory latency (fixed) 245 cycles, bandwidth 16 bytes / cycle
prefetchers stride prefetcher (L1), stream prefetchers (L2 & L3)
page size 4MB
store sets SSIT 2k (4-way skewed-assoc.), LFST 42 stores (full-assoc. LRU)

data
store

data
store

addr addraddr

ALU

long int

to load/store queues to store queue

fp add
fp mul
fp mov

fp physical registers

fp add
fp mul
fp mov
fp long

to store queuedata cache

from L1

ALU ALU ALU

int physical registers

Fig. 3. Baseline out-of-order engine with 8 INT execution ports and 3 FP execution ports. The INT register
file has 12 read ports and 6 write ports. The FP register file has 5 read ports and 4 write ports. The issue
buffers are not shown.

4.1. Benchmarks
The benchmarks used for this study are the SPEC CPU 2006. They were all compiled
with gcc -O2 and executed with the reference inputs. A trace is generated for each
benchmark. Each trace consists of about 20 samples stitched together. Each sample
represents 50 million executed instructions. The samples are taken every fixed num-
ber of instructions and represent the whole benchmark execution. In total, 1 billion
instructions are simulated per benchmark.

4.2. Baseline microarchitecture
Our baseline superscalar microarchitecture is representative of current high-end mi-
croarchitectures. The main parameters are given in Table II. Several parameters are
identical to those of the Intel Haswell microarchitecture, in particular the issue buffer
and load/store queues [Intel 2014].

9

Table III. IPCs for the baseline configuration

SPEC INT IPC SPEC INT IPC
400.perlbench 2.97 401.bzip2 1.70
403.gcc 1.80 429.mcf 0.50
445.gobmk 1.97 456.hmmer 3.64
458.sjeng 2.40 462.libquantum 3.28
464.h264ref 2.99 471.omnetpp 1.05
473.astar 0.75 483.xalancbmk 1.44
SPEC FP IPC SPEC FP IPC
410.bwaves 2.09 416.gamess 2.94
433.milc 2.46 434.zeusmp 1.46
435.gromacs 1.76 436.cactusADM 1.97
437.leslie3d 1.57 444.namd 1.95
447.dealII 2.70 450.soplex 0.94
453.povray 2.56 454.calculix 2.36
459.GemsFDTD 1.55 465.tonto 2.73
470.lbm 1.38 481.wrf 1.97
482.sphinx3 1.95

Macro-fusion is applied to conditional branches when the previous instruction mod-
ifies the flags and is of type ALU [Intel 2014]. That is, the two instructions give a
single micro-op. Recent Intel processors feature a micro-op cache and a loop buffer [In-
tel 2014], which are not simulated here (this study focuses on the out-of-order engine).
Instead, we simulate an aggressive front end delivering up to 8 decoded instructions
per cycle.

For every memory access, we generate an address micro-op for the address calcula-
tion and a store micro-op or a load micro-op for writing or reading the data. The load
queue can issue 2 loads per cycle.

The micro-ops have two inputs and one output. Some partial register writes require
to read the old register value. When necessary, we introduce an extra micro-op to merge
the old value and the new value. Each physical register is extended to hold the flags,
which are renamed like architectural registers. A micro-op that only reads the flags,
such as a non-fused conditional branch, accesses a read port of the physical register
file. Micro-ops that do not write a register or do not update the flags do not reserve a
physical register. These include branch, store, and address micro-ops (address micro-
ops write in the load/store queues).

Loads are executed speculatively. Load mis-speculations are repaired when a mis-
executed instruction is to be retired from the reorder buffer, by flushing the instruction
window and re-fetching from the mis-executed instruction. The memory independence
predictor is the Store Sets [Chrysos and Emer 1998]. A load can execute speculatively
if the most recent store in its store set (the “suspect” store) has been retired from the
store queue. A load can also execute speculatively if a matching store queue entry can
provide the data to the load and that store is not older than the “suspect” store. The
Store Set ID Table (SSIT) is indexed by hashing load/store PCs, using different hashing
functions for loads and stores (an x86 instruction may contain both a load and a store).

Figure 3 depicts the baseline out-of-order engine. The INT (integer) and FP (floating-
point) clusters each have their own issue buffer and scheduling logic. There are 8
INT execution ports and 3 FP execution ports. The execution ports for address micro-
ops and store micro-ops do not need a register write port. Instead, they write in the
load/store queues. We assume 128 INT and 128 FP physical registers, which is suffi-
cient for our single-threaded baseline core. Three INT execution ports are specialized
with only one register read port. This saves 3 read ports6. In total, the INT register file

6We checked that this has very little impact on the IPC.

10

has 12 read ports and 6 write ports. The FP register file has 5 read ports and 4 write
ports. The ALU execution ports can execute most INT micro-ops. An execution port is
selected for a micro-op before it enters the issue buffer. For load balancing, if several
execution ports can execute a given micro-op, the micro-op is put on the execution port
that received a micro-op least recently.

5. POTENTIAL IPC GAINS FROM A MORE COMPLEX SUPERSCALAR
MICROARCHITECTURE

This section studies the impact on IPC of enlarging certain critical parts of the mi-
croarchitecture, ignoring implementation issues. The configurations considered in this
section are non-clustered microarchitectures. We focus on first-order back-end parame-
ters that may have an important impact on IPC. The parameters are listed in Table IV.
Some of the parameters are lumped to limit the configuration space. We include front-
end width in the list of parameters as a wider back-end generally requires a wider
front-end. The 7 parameters of Table IV define 128 non-clustered configurations (in-
cluding the baseline), each parameter being either as in the baseline core, or doubled
compared to the baseline.

We simulated all 128 configurations and obtained the IPC of each of them. The IPCs
for the baseline are displayed in Table III. For all the other configurations, the IPC of
each benchmark is normalized to its baseline IPC, that is, only speedups are given

To present our simulation results in a concise way, we use the following method for
naming the 128 configurations. Each of the 7 parameters is represented by a unique
symbol (see Table IV). The presence of that symbol in a configuration’s name means
that the corresponding parameter is twice as large as in the baseline core, otherwise
it is dimensioned as the baseline. For instance, configuration ’Bicw’ features INT and
FP issue buffers of 120 micro-ops, 16 INT execution ports (the ones shown of Figure 3,
duplicated), can issue 4 loads and do 2 writes in the L1 data cache per cycle, can predict
2 taken branches and fetch 2 instruction cache blocks per cycle cycle. Otherwise, it is
identical to the baseline.

For summarizing the simulation results, we define configuration classes based on
the configuration’s name length. For example, the baseline configuration is in class 0
and configuration ’Bicw’ is in class 4. Then, for each configuration class from 0 to 7, we
find the worst (lowest mean speedup) and best (highest mean speedup) configurations
in that class.

Figure 4 shows speedups over the baseline for the worst and best configurations in
each configuration class, with the configurations’ names indicated. Notice that there
is no single bottleneck in the baseline for the SPEC INT, as the best configuration in
class 1 yields only +5% sequential performance. For the SPEC INT, the most effective
single parameter is the number of INT execution ports. Indeed, the best configuration
in class 1 doubles the number of INT execution ports (’i’), and the worst configuration
in class 6 is the one without ’i’ (the speedup drops from 1.25 to 1.12).

For the SPEC FP, the most effective single parameter is the number of FP execution
ports. Just doubling the number of FP execution ports (’f ’) yields +11% sequential
performance on average, and the worst configuration in class 6 is the one without ’f ’
(the speedup drops from 1.41 to 1.20). The other width parameters are not important
bottlenecks for the SPEC FP, which are more sensitive to window parameters (physical
registers, ROB, etc.).

The extra microarchitecture complexity can be introduced incrementally over sev-
eral technology generations. For instance, a first step could be to increase the number
of FP execution ports, as this brings significant performance gains on scientific work-
loads. Increasing simultaneously the number of INT execution ports, DL1 bandwidth
and front-end width could be a second step, which would allow more SMT contexts.

11

Table IV. Microarchitecture parameters varied in the non-clustered
configurations. Upper case letters are for instruction window pa-
rameters, lower case letters for width parameters. Parameters
’W’,’w’ and ’c’ are lumped parameters

symbol parameter
R total number of physical registers
B total issue buffer size
W ROB, load & store queues, LFST, MSHR
i INT execution ports
f FP execution ports
c load issue width & DL1 write ports
w front-end width (I-fetch, decode, rename, retire)

SPEC INT SPEC FP

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

f i

W
f

iw

B
W

f

ic
w

B
W

fc

R
ic

w

B
W

fc
w

R
W

ic
w

R
B

W
fc

w

R
B

W
ic

w

R
B

W
if

cw

sp
ee

d
u
p

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

 1.35

 1.40

 1.45

w f

B
w fc

B
iw

R
W

f

B
W

iw

R
B

W
f

B
W

ic
w

R
B

W
fc

R
B

W
ic

w

R
B

W
if

c

R
B

W
if

cw

sp
ee

d
u
p

Fig. 4. Speedup over the baseline for the worst and best configuration in each configuration class. The left
graph is the geometric mean speedup for the 12 SPEC INT benchmarks, the right graph for the 17 SPEC FP
benchmarks. The presence of a letter in a configuration’s name indicates that the corresponding parameter
is doubled compared to the baseline (see Table IV).

However, the hardware complexity of the scheduler and bypass network increases
quadratically with the issue width [Palacharla et al. 1997], and clustering must be
introduced at some point in order not to impact the clock frequency. In the next sec-
tion, we quantify the impact of clustering on IPC.

6. DUAL-CLUSTERED CONFIGURATIONS
Section 5 did not take into account the potential impact on the clock cycle. Increasing
the number of execution ports while keeping the same clock frequency will require to
use clustering at some point. In this section, we study the impact of the inter-cluster
delay on IPC, assuming symmetric clustering and register write specialization (cf. Sec-
tion 3).

The INT and FP clusters depicted in Figure 3 are duplicated7, which means a total
a 8 ALUs, 6 address generators, and 4 floating-point operators. The INT and FP regis-
ters are split in 2 partitions (write specialization). Cluster 0 writes in partition 0 and
cluster 1 writes in partition 1. Each partition is implemented with 2 mirror banks, one
bank in each cluster. Each cluster has a bank for partition 0 and a bank for partition
1, but writes only in its own partition. Each of the 4 banks has the same number of
read and write ports as the register file in the single-cluster baseline (cf. Section 3.4).

7The reason for clustering the FP execution ports is that floating-point operators have a big silicon footprint,
and result buses have to span a long physical distance.

12

SPEC INTiiffwc (INT)

-27 %
-24 %
-21 %
-18 %
-15 %
-12 %

-9 %
-6 %
-3 %
0 %
3 %
6 %
9 %

12 %
15 %
18 %

ICD=0 ICD=1 ICD=2 ICD=3

cluster 0
Mod-1
Mod-2
Mod-4
Mod-8
Mod-16
Mod-32
Mod-64
Mod-128
Mod-256
ifwc

SPEC FPiiffwc (FP)

-16 %

-12 %

-8 %

-4 %

0 %

4 %

8 %

12 %

16 %

ICD=0 ICD=1 ICD=2 ICD=3

cluster 0
Mod-1
Mod-2
Mod-4
Mod-8
Mod-16
Mod-32
Mod-64
Mod-128
Mod-256
ifwc

Fig. 5. IPC gain over the baseline for clustered iiffccw configurations, for inter-cluster delays (ICD) of 0,1,2
and 3 cycles, under a Mod-N steering policy with N ranging from 1 to 256. The leftmost bar of each group of
bars is the IPC gain when steering all the micro-ops to cluster 0. The rightmost bar is the IPC gain of the
non-clustered ifcw configuration. The top graph is the average for SPEC INT, the bottom one for SPEC FP.

The L1 data cache is banked, with 8 banks interleaved per 8-byte word, like the
Intel Sandy Bridge [Intel 2014]. The load queue can issue 4 loads per cycle, instead of
2 in the baseline. Before being entered in the load queue, loads are “steered” to one of
the register file partition (a bit in each load queue entry indicates to which partition
the load has been steered). There are 2 write ports dedicated to loads in each physical
register partition (cf. Figure 1). Each cycle, the load scheduling logic selects the 2 oldest
ready loads in each partition.

For the clustered configurations, we assume a DL1 latency of 4 cycles, instead of 3
cycles for the baseline, to take into account the extra complexity of the DL1 cache.

We consider 2 clustered configurations, named using a method similar to the one
used in Section 5, except that notation ’iiffcc’ means that the baseline cluster of Figure
3 is duplicated and the issue buffer and physical registers are partitioned:

— iiffccw. Same total instruction window capacity as the baseline (same ROB, same
MSHR, etc.), but double front-end bandwidth and dual-cluster backend. Each cluster
has an issue buffer partition of 30 micro-ops and a physical register partition of 64
registers.

— RBWiiffccw. Dual cluster back-end, but with the total instruction window capacity
doubled: twice bigger ROB, MSHR, load/store queues and LFST, each cluster hav-
ing an issue buffer partition of 60 micro-ops and a physical register partition of 128
registers.

13

SPEC INTRBWiiffwc (INT)

-15 %
-12 %

-9 %
-6 %
-3 %
0 %
3 %
6 %
9 %

12 %
15 %
18 %
21 %
24 %
27 %
30 %

ICD=0 ICD=1 ICD=2 ICD=3

cluster 0
Mod-1
Mod-2
Mod-4
Mod-8
Mod-16
Mod-32
Mod-64
Mod-128
Mod-256
RBWifwc

SPEC FPRBWiiffwc (FP)

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

45 %

50 %

ICD=0 ICD=1 ICD=2 ICD=3

cluster 0
Mod-1
Mod-2
Mod-4
Mod-8
Mod-16
Mod-32
Mod-64
Mod-128
Mod-256
RBWifwc

Fig. 6. IPC gain over the baseline for clustered RBWiiffccw configurations (cf. Figure 5).

6.1. Dual-cluster with baseline instruction window size
Figure 5 shows the IPC gain over the baseline for the iiffccw clustered configuration,
assuming inter-cluster delays of 0,1,2 and 3 cycles8 under a Mod-N steering policy with
N ranging from 1 to 256. Recall that Mod-N steers N x86 instructions (i.e., more than
N micro-ops) to a cluster, the next N instructions to the other cluster, and so forth. The
leftmost bar of each group of bars in Figure 5 shows the IPC gain when steering all
micro-ops to cluster 0.

While the non-clustered configurations showed that it is beneficial to increase the
issue width first, and then the instruction window, Figure 5 shows that for the clus-
tered configurations the situation is quite different. Indeed, the main conclusion from
Figure 5 is that clustering without enlarging the total instruction window does not
bring any IPC gain when the inter-cluster delay is 3 cycles. Several factors contribute
to this. The increased DL1 latency (from 3 to 4 cycles), the partitioning of the issue
buffer and physical registers, the clustering of execution units and load issue ports
contribute to decreasing the potential IPC gain, even with a null inter-cluster delay
and a Mod-1 steering. But the biggest impact comes from the inter-cluster delay. As
the inter-cluster delay increases, the IPC gain drops quickly and eventually becomes
an IPC loss, even with the best steering policy (Mod-32 here).

8Inter-cluster delays of 0 and 1 cycles are not realistic, they are provided only for analysis.

14

SPEC INT SPEC FP

-4 %

0 %

4 %

8 %

12 %

16 %

20 %

24 %

28 %

32 %

36 %

40 %

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

Mod-32
Mod-64
Mod-Dyn

-8 %

0 %

8 %

16 %

24 %

32 %

40 %

48 %

56 %

64 %

72 %

80 %

41
0.

bw
av

es
41

6.
ga

m
es

s
43

3.
m

ilc
43

4.
ze

us
m

p
43

5.
gr

om
ac

s
43

6.
ca

ct
us

AD
M

43
7.

le
sl

ie
3d

44
4.

na
m

d
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

45
4.

ca
lc

ul
ix

45
9.

G
em

sF
D

TD
46

5.
to

nt
o

47
0.

lb
m

48
1.

w
rf

48
2.

sp
hi

nx
3

Mod-32
Mod-64
Mod-Dyn

Fig. 7. IPC gain over the baseline for a clustered RBWiiffccw configuration with an inter-cluster delay of 3
cycles: benchmark per benchmark comparison of Mod-32 steering, Mod-64 and adaptive Mod-N.

6.2. Dual-cluster with double instruction window
Figure 6 gives the IPC gain over the baseline for the RBWiiffccw clustered configura-
tion. Here, the total instruction window capacity is doubled. In particular, the issue
buffer partition and physical register partition of each cluster have the same size as
the baseline.

Now, the dual-cluster can outperform the baseline for some Mod-N steering. When
steering all micro-ops to cluster 0, the IPC is very close to the baseline, with the impact
of the increased DL1 latency more or less compensated by the increased reorder buffer
and MSHRs. When the inter-cluster delay is null, Mod-N steering with N ≤ 32 achieves
a good ILP balancing. For N > 32 ILP imbalance decreases the IPC. As the inter-cluster
delay increases, Mod-N steering with small values of N generates significant IPC drop.
With a large N, there are fewer inter-cluster communications and better tolerance to
the inter-cluster delay. With an inter-cluster delay of 2 cycles, Mod-64 gives an average
IPC gain of +14.3% on the SPEC INT and +29.6% on the SPEC FP. With an inter-
cluster delay of 3 cycles, the IPC gain with Mod-64 is still +12.9% and +28.0% on the
SPEC INT and SPEC FP respectively.

It can be observed in Figure 6 that when the inter-cluster delay is 2 cycles or more,
the IPC is very sensitive to Mod-N steering. Figure 7 shows the IPC gain over the
baseline, benchmark per benchmark, for the RBWiiffccw clustered scheme, assuming
a 3-cycle inter-cluster delay, comparing Mod-32 and Mod-64 steering. For some bench-
marks, Mod-32 outperforms Mod-64. For some other benchmarks it is the other way
around.

Baniasadi and Moshovos proposed that, instead of having a fixed Mod-N, we could
have an adaptive Mod-N trying to find the best N dynamically [Baniasadi and
Moshovos 2000]. We tried an adaptive method similar to Baniasadi’s, trying to identify
dynamically the best Mod-N with N in {32, 48, 64, 80, 96}. After having executed 500k
micro-ops under Mod-N steering, we try successively Mod-max(32,N-16), Mod-N and
Mod-min(96,N+16) for 50k retired micro-ops each, counting the number of cycles. We
choose the one with the best local performance, Mod-N’, and run under Mod-N’ for the
next 500k micro-ops. We repeat this process periodically, every 500k micro-ops. Results
for the adaptive method are shown in Figure 7.

On average, assuming an inter-cluster delay of 3 cycles, the adaptive steering
slightly outperforms Mod-64 and Mod-32 and achieves an IPC gain of +14.1% over
the baseline for the SPEC INT and +28.8% for the SPEC FP.

15

	
	
	
4	

	
	
	
4	

	
	
	
4	

	
	
	
4	

oldest	 youngest	

Mod-‐4	

4 = 28 − 4
≈ 0.83

12 − 8
≈ 0.63

16 − 12
≈ 0.54

cluster	 0:	 ILP=2.63	

cluster	 1:	 ILP=1.37	

	
	
	

	
	
	

instruc>on	 window	

Mod-‐8	 8	 8	

8 ≈ 2.8316 − 8 ≈1.17

cluster	 0:	 ILP=2.83	

cluster	 1:	 ILP=1.17	

Fig. 8. Illustration of ILP imbalance on 2 clusters, assuming a null inter-cluster delay and assuming the
average ILP is the square root of the instruction window size. The upper example is for a Mod-4 steering
policy, the lower example for Mod-8. In both examples, the instruction window holds 16 instructions.

6.3. Analysis
Our findings should be contrasted with those of Baniasadi and Moshovos. They found
that, among all Mod-N steering policies, Mod-3 was the best policy on average [Bani-
asadi and Moshovos 2000]. However they were considering 2-issue clusters.

We first explain with a simple analytical model why Mod-N with a large N is better
for wide-issue clusters. Our analytical model is based on the empirical observation that
the average ILP is roughly the square-root of the instruction window size [Riseman
and Foster 1972; Michaud et al. 2001; Karkhanis and Smith 2004]. We further assume
a null inter-cluster delay. The square-root law models the fact that instructions that
are ready for execution at a given instant are more likely to be found among the oldest
instructions in the instruction window than among the youngest ones. In the example
of Figure 8, at the instant considered, the average ILP on cluster 0 is greater than
on cluster 1. The ILP imbalance between the 2 clusters increases with the value of N.
Because the instantaneous IPC is the minimum of the issue width and the ILP, if the
per-cluster issue width is 2 instructions, the IPC on cluster 0 is limited by the issue
width, and Mod-4 outperforms Mod-8 (the total IPC is 2+1.37=3.37 with Mod-4 and
2+1.17=3.17 with Mod-8). If we increase the per-cluster issue width to 3 instructions
instead of 2, the IPC on cluster 0 is not limited by the issue width, and both Mod-8 and
Mod-4 yield the same IPC (hence Mod-8 outperforms Mod-4 if the inter-cluster delay
is non null). There is roughly a square relation between the per-cluster issue width
and the value of N beyond which ILP imbalance impacts performance significantly.
This explains why the optimal N is much greater for wide-issue than for narrow-issue
clusters.

To confirm this analysis, we simulated a quad-cluster back-end, each cluster being
able to issue and execute 2 ALU or address micro-ops per cycle. The load queue can
issue 2 loads per cycle. We assume an issue buffer partition of 15 micro-ops per cluster,
so that the total issue buffer capacity is equivalent to the baseline. We assume 128
physical registers, as the baseline, but we removed register write specialization9. The
other microarchitecture parameters are identical to the baseline.

Figure 9 shows the results of this experiment, for the SPEC INT only. When the
inter-cluster delay is (unrealistically) null, Mod-N steering with N ≤ 4 achieves a
good ILP balancing. The quad-cluster slightly outperforms the baseline thanks to the
8 ALUs (instead of 4 in the baseline). However, for N above 8, ILP imbalance impacts
performance significantly because of the small per-cluster issue width.

9Having more architectural registers than physical registers in a cluster partition may lead to deadlocks
[Seznec et al. 2002b].

16

-45 %
-40 %
-35 %
-30 %
-25 %
-20 %
-15 %
-10 %

-5 %
0 %
5 %

ICD=0 ICD=1 ICD=2 ICD=3

Mod-1
Mod-2
Mod-4
Mod-8
Mod-16
Mod-32
Mod-64
Mod-128
Mod-256

Fig. 9. IPC gain over the baseline for a 4-cluster back-end. Each cluster can issue and execute 2 micro-ops
per cycle. Only SPEC INT averages are shown.

With an inter-cluster delay of one cycle, as Baniasadi and Moshovos assumed in
their study, the trade-off between ILP balancing and inter-cluster communications is
at work, and the best steering policy is Mod-2. This is consistent with Baniasadi and
Moshovos’ finding that Mod-3 is the best Mod-N policy10. As the inter-cluster delay
increases to 2 and 3 cycles, though, the best Mod-N steering becomes Mod-8 and Mod-
16 respectively, but the IPC loss is important.

By contrast, with wide-issue clusters, ILP imbalance remains bearable for values of
N up to 32-64, as shown in the previous section. As a result, there are few inter-cluster
communications, which allows to tolerate longer inter-cluster delays.

6.4. Possible steps toward the proposed dual-cluster configuration
The dual-cluster microarchitecture we described is supposed to be the result of incre-
mental microarchitecture modifications over several technology generations. However,
going from a non-clustered microarchitecture to a clustered one introduces a perfor-
mance discontinuity. Our results show that, to absorb the performance impact of the
inter-cluster delay, the instruction window must be large enough. However, clustering
is what permits enlarging one of the components of the instruction window: the issue
buffer. Yet, we would like an increase of microarchitecture complexity to be rewarded
by a performance gain, at least on some applications. The results in Figure 4 suggest
a possible path toward the proposed wide-issue dual-cluster configuration:

(1) Introduce clustering for the FP execution units only11.
(2) Enlarge the instruction window, except the issue buffer (reorder buffer, load/store

queues, physical registers, MSHRs). This can be done progressively.
(3) When the instruction window is large enough, introduce clustering for the INT

execution units and increase the total issue buffer capacity.

The first two steps should benefit applications with characteristics similar to the SPEC
FP benchmarks (cf. Figure 4, configuration ’RWf’).

10For us, the “2” in Mod-2 means two x86 CISC instructions, while Baniasadi and Moshovos considered
RISC instructions.
11Our Mod-64 policy steers to the other FP cluster every 64 general instructions. We did not evaluate the
variant of Mod-N that steers to the other FP cluster every N floating-point instructions.

17

7. ENERGY CONSIDERATIONS
The energy per instruction (EPI) is likely to be higher in the dual-cluster microarchi-
tecture than in the single-cluster baseline. As explained in Section 2, if the microarchi-
tecture is modified incrementally, the microarchitectural EPI increase can be hidden
by the energy reductions coming from technology. Nevertheless, we provide in this sec-
tion a few research directions for tackling the microarchitectural EPI increase.

7.1. Static EPI
The second cluster and larger instruction window substantially increase the back-end
static power. The effect on the static EPI, however, is mitigated by the speedup brought
by the dual-cluster and the larger instruction window. If the core (including the L2
cache) is powered off during long idle periods, the static EPI depends on the speedup:
the higher the speedup, the lower the static EPI. However, not all applications have
the same speedup (cf. Figure 7).

For example, let us assume that the L2 cache represents 40% of the baseline core
static power, the back-end 40% and the front-end 20%. Moreover, let us assume that
the back-end static power of the dual-cluster is twice that of the baseline core, and the
front-end static power 30% higher. For example, if the IPC is unchanged, the static
EPI is multiplied by 0.4 × 1 + 0.4 × 2 + 0.2 × 1.3) = 1.46. But with a speedup of +20%,
the static EPI is multiplied by only 1.46/1.20 = 1.22.

A topic for future research is to find a way to turn the second cluster on and off
dynamically depending on the expected speedup.

7.2. Gating inter-cluster communications for reduced dynamic EPI
The dual-cluster microarchitecture has a higher dynamic EPI than the baseline single-
cluster. Some of the extra dynamic EPI comes from larger shared structures with a
higher bandwidth (DL1 cache, DL1 TLB, load/store queues,...). Inter-cluster communi-
cations also contribute to the increased dynamic EPI, in the issue buffer, in the register
file and in the bypass network.

If we could identify micro-ops that do not need to forward their result to the other
cluster, which we call in-cluster micro-ops, then the result bus segment going out of the
cluster could be gated12 when these micro-ops executes. Such gating would reduce the
energy spent in the bypass network (charging and discharging the long result buses
connecting the clusters) and writing the distant register file bank.

In particular, if the steering policy steers all the micro-ops from the same instruction
to the same cluster, a micro-ops that writes a physical register not mapped to an ar-
chitectural register produces a value which lives only within the instruction and does
not need to be sent to the other cluster.

Roughly, 55% of all the micro-ops executed by the SPEC INT and 65% of all the
micro-ops executed by the SPEC FP (compiled with gcc -O2) are micro-ops that produce
a value, not counting address computations. On average, about 12% of these micro-ops
do not write an architectural register. That is, 12% of the inter-cluster communications
can be gated, on average, just by considering these micro-ops.

To identify more in-cluster micro-ops, a possible solution is to add some information
in the trace cache (cf. Section 3.7). We assume that all the micro-ops from the same
instructions are put in the same trace, and that all the micro-ops in a trace are steered
to the same cluster13. If two micro-ops in the same trace write the same architectural
register (write-after-write dependency), the first micro-op is an in-cluster one. So when

12By putting some tri-state buffers in high impedance state, or by clock-gating some latches.
13If a trace contains on average 10 instructions, a policy equivalent to Mod-60 steers 6 traces to a cluster,
the next 6 traces to the other cluster, and so forth.

18

Table V. Percentage of values (i.e., not counting addresses) produced by a
cluster that do not need to be sent to the other cluster, depending on the
trace format

micro-ops/trace in-cluster values
trace format INT FP INT FP

8 micro-ops, 1 branch 5.6 6.6 25 % 32 %
12 micro-ops, 2 branches 10.2 11.1 39 % 42 %
16 micro-ops, 3 branches 14.6 15.2 48 % 49 %

building the trace, in-cluster micro-ops are identified and this information is stored
along with the trace in the micro-op cache (one bit per micro-op).

Table V shows the percentage of in-cluster values for various trace formats. As ex-
pected, the longer the trace, the more in-cluster values can be identified. For instance,
with traces containing about 10 micro-ops on average, about 40% of the values (i.e., not
counting addresses) produced by a cluster do not need to be sent to the other cluster,
meaning that the corresponding inter-cluster communications can be gated.

Gating some inter-cluster communications requires to keep the physical register file
content consistent, as each physical register partition has two copies (one in each clus-
ter). When an in-cluster micro-op executes, it writes in its local register bank and up-
dates its local scoreboard, but it does not update the distank bank and scoreboard. A
branch misprediction can result in an inconsistent state. A possible solution is to retire
traces from the reorder buffer only when all the micro-ops in the trace have been ex-
ecuted successfully. When a branch misprediction is detected, the in-cluster micro-ops
that are before the branch in the same trace are still in the reorder buffer. The branch
misprediction recovery logic must find these micro-ops, get their destination physical
registers Pi, and inject directly in the local issue buffer some special micro-ops MOV
Pi,Pi that send the value of Pi to the distant cluster. These MOV micro-ops execute
while the correct-path instructions go through the front-end pipeline stages.

An interesting direction for future research is the possibility to dedicate some execu-
tion ports and/or some physical registers to in-cluster micro-ops, which would decrease
the hardware complexity of the bypass network and register file [Vajapeyam and Mitra
1997; Rotenberg et al. 1997].

8. RELATED WORK
Several papers have studied steering policies for clustered microarchitectures. Some
papers proposed different variants of dependence-based steering policies trying to
steer dependent instructions to the same cluster in order to minimize inter-cluster
communications, while trying to maintain sufficient load balancing between clusters
[Palacharla et al. 1997; Canal et al. 1999; Canal et al. 2000; Fields et al. 2001; González
et al. 2004; Salverda and Zilles 2005]. However, these dependence-based policies are
complex, and steering multiple instructions per cycle is an implementation challenge
[Salverda and Zilles 2005; Cai et al. 2008].

Baniasadi and Moshovos compared several different steering policies and found that
a simple Mod-3 steering policy performs relatively well on their microarchitecture con-
figuration (four 2-issue clusters, 1-cycle inter-cluster delay) [Baniasadi and Moshovos
2000].

Zyuban and Kogge proposed clustering as a solution for decreasing the energy per
instruction (EPI) for a given IPC [Zyuban and Kogge 2001]. Like us, they considered
wide-issue clusters. However, they did not quantify the IPC improvements that clus-
tering can provide under a fixed clock cycle.

Trace processors distribute chunks of consecutive instructions (i.e., traces) to the
same processing element (PE), like Mod-N steering [Vajapeyam and Mitra 1997;
Rotenberg et al. 1997]. Rotenberg observed that the optimal trace size depends on

19

the PE issue width and that, with 4-issue PEs, 32-instruction traces generally yield
higher IPCs than 16-instruction traces [Rotenberg 1999].

To the best of our knowledge, three commercial superscalar processors14 have used
clustering: the DEC Alpha 21264 [Kessler 1999] and, recently, the IBM POWER7 and
POWER8 [Sinharoy et al. 2011; Sinharoy et al. 2015]. These processors implement
narrow-issue clusters with an intercluster delay of one cycle.

The Alpha EV8 processor (canceled in 2001) exploited ILP more aggressively than
today’s processors: two 8-instruction blocks fetched per cycle, 8-wide register renam-
ing, 8-wide issue, 8 ALUs, 4 floating-point operators, 2 loads + 2 stores per cycle, 512
physical registers with 16 read ports and 8 write ports, a 128-entry issue buffer [Pre-
ston et al. 2002], for an aggressive clock cycle equivalent to 12 gate delays [Herrick
2000]. However, only few details about the EV8 microarchitecture were made public.

Some authors have proposed to adjust the per-thread IPC depending on the num-
ber of threads by modifying the microarchitecture so that several small cores can be
dynamically aggregated into bigger, faster cores [İpek et al. 2007; Boyer et al. 2010].
Eyerman and Eeckhout have argued that similar adaptivity could be obtained with
conventional SMT [Eyerman and Eeckhout 2014]. Our proposition of wide-issue su-
perscalar core goes in the direction advocated by Eyerman and Eeckhout.

9. CONCLUSION
As the number of cores grows, fewer applications benefit from this growth. Hence se-
quential performance is still very important. If the clock frequency remains fixed, as in
the last 10 years, the only way to increase sequential performance without recompiling
is to increase the IPC. Increasing the IPC significantly likely requires more hardware
complexity, in particular a wider issue and a larger instruction window.

At some point, issuing more micro-ops per cycle requires to use clustering. Cluster-
ing was introduced and studied at a time when microarchitects were trying to push the
clock frequency as high as possible. However, if the clock frequency remains constant,
clustering becomes a means to increase the IPC, and our understanding of clustering
must be updated.

Unlike most past research on clustered microarchitecture, we consider wide-issue in-
stead of narrow-issue clusters. We have shown that, with wide-issue clusters, a simple
Mod-64 steering policy tolerates inter-cluster delays of 3 cycles. We have also shown
that, in single-thread execution, a significant fraction of the values produced by a clus-
ter do not need to be forwarded to the other cluster. This can be exploited to gate some
inter-cluster communications and decrease energy consumption.

The wide-issue dual-cluster configuration that we studied is supposed to be the re-
sult of an incremental complexification of the whole microarchitecture over several
technology generations. Though clustering solves some key complexity issues in the
back end, other parts of the microarchitecture which were not the focus of this study,
such as front-end bandwidth and load/store queues, will have to be scaled up too. Some
of the solutions that will be needed for these other parts are already known. Some new
solutions will probably be needed too.

A. A SIMPLE FORMULA FOR HOT SPOT TEMPERATURE
This appendix provides a simple approximate formula for quickly reasoning about hot
spot steady-state temperature in microprocessors15.

14Some commercial VLIW processors also used clustering, e.g., Multiflow [Lowney et al. 1993].
15We provide formula (1) because we are not aware of any reference for it and we believe this formula is
useful for microarchitects and designers.

20

A hot spot can be modeled roughly as a disk heat source of (small) radius r. In what
follows, A is the die area, P is the total power dissipation, q = P/A is the average power
density, Q is the power density inside the hot spot, Ksi is the thermal conductivity of
silicon, R is the thermal resistance of the die and its packaging (including the heat
sink). We assume that the hot spot is much smaller than the die (πr2 � A) and that
the average power density outside of the hot spot is approximately equal to q.

By the principle of superposition [Michaud et al. 2005], the temperature ∆T relative
to the ambient at the center of the hot spot can be obtained as ∆Tdie + ∆Tdisk where
∆Tdie is the temperature contribution of a uniform power density q on the die

∆Tdie = R× q ×A

(the temperature contribution of remote heat sources is weakly dependent on their
exact location, hence a uniform power density provides a good approximation), and
∆Tdisk is the contribution of a disk heat source of power density Q− q.

∆Tdisk =
1

Ksi
× (Q− q)× r

(see [Thomas 1957] for the temperature of a disk heat source). Hence the temperature
of the hot spot (relative to the ambient) is

∆T = R× P +
1

Ksi
× (Q− q)× r (1)

To keep temperature constant, it is sufficient to keep the total power P constant and
the power densities Q and q inversely proportional to the hot spot radius r.

REFERENCES
A. Baniasadi and A. Moshovos. 2000. Instruction distribution heuristics for quad-cluster, dynamically-

scheduled, superscalar processors. In Proceedings of the International Symposium on Microarchitecture
(MICRO).

L. Baugh and C. Zilles. 2006. Decomposing the load-store queue by function for power reduction and scala-
bility. IBM Journal of Research and Development 50, 2/3 (March 2006).

G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. 2010. Evolution of thread-level parallelism in desktop
applications. In Proceedings of the International Symposium on Computer Architecture (ISCA).

M. Boyer, D. Tarjan, and K. Skadron. 2010. Federation: boosting per-thread performance of throughput-
oriented manycore architectures. ACM Transactions on Architecture and Code Optimization 7, 4 (Dec.
2010).

Q. Cai, J. M. Codina, J. González, and A. González. 2008. A software-hardware hybrid steering mechanism
for clustered microarchitectures. In Proceedings of the International Symposium on Parallel and Dis-
tributed Processing (IPDPS).

H. W. Cain and M. H. Lipasti. 2004. Memory ordering: a value-based approach. In Proceedings of the Inter-
national Symposium on Computer Architecture (ISCA).

R. Canal, J.-M.-Parcerisa, and A. González. 1999. A cost-effective clustered architecture. In Proceedings of
the International Conference on Parallel Architectures and Compilation Techniques (PACT).

R. Canal, J. M. Parcerisa, and A. González. 2000. Dynamic cluster assignment mechanisms. In Proceedings
of the International Symposium on High Performance Computer Architecture (HPCA).

G. Z. Chrysos and J. S. Emer. 1998. Memory dependence prediction using store sets. In Proceedings of the
International Symposium on Computer Architecture (ISCA).

S. Curtis, R. J. Murray, and H. Opie. 1999. Multiported bypass cache in a bypass network. US Patent
6000016. (1999).

K. Czechowski, V. W. Lee, E. Grochowski, and R. Ronnen. 2014. Improving the energy efficiency of big cores.
In Proceedings of the International Symposium on Computer Architecture (ISCA).

R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc. 1974. Design of
ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits
SC-9, 5 (Oct. 1974).

21

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. 2011. Dark silicon and the end
of multicore scaling. In Proceedings of the International Symposium on Computer Architecture (ISCA).

S. Eyerman and L. Eeckhout. 2014. The benefit of SMT in the multi-core era: flexibility towards degrees of
thread-level parallelism. In Proceedings of International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS).

K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. 1997. The Multicluster architecture: reducing cycle time
through partitioning. In Proceedings of the International Symposium on Microarchitecture (MICRO).

J. A. Farrell and T. C. Fischer. 1998. Issue logic for a 600-MHz out-of-order execution microprocessor. IEEE
Journal of Solid-State Circuits 33, 5 (May 1998), 707–712.

B. Fields, S. Rubin, and R. Bodik. 2001. Focusing processor policies via critical-path prediction. In Proceed-
ings of the International Symposium on Computer Architecture (ISCA).

M. Golden, S. Arekapudi, and J. Vinh. 2011. 40-entry unified out-of-order scheduler and integer execution
unit for AMD Bulldozer x86-64 core. In IEEE International Solid-State Circuits Conference (ISSCC).

A. González, F. Latorre, and G. Magklis. 2011. Processor microarchitecture. Morgan & Claypool, Chapter 7,
78–90.

J. González, F. Latorre, and A. González. 2004. cache organizations for clustered microarchitecture. In Pro-
ceedings of the Workshop on Memory Performance Issues (WMPI).

M. Goshima, K. Nishino, Y. Nakashima, S. i. Mori, T. Kitamura, and S. Tomita. 2001. A high-speed dynamic
instruction scheduling scheme for superscalar processors. In Proceedings of the International Sympo-
sium on Microarchitecture (MICRO).

W. Herrick. 2000. Design Challenges in Multi-GHz Microprocessors. Keynote - Asia and South Pacific Design
Automation Conference (ASP-DAC). (2000).

Intel. 2014. Intel 64 and IA-32 architectures optimization reference manual.
E. İpek, M. Kırman, N. Kırman, and J. F. Martı́nez. 2007. Core fusion: accommodating software diversity in

chip multiprocessors. In Proceedings of the International Symposium on Computer Architecture.
ITRS. 2013. International Technology Roadmap for Semiconductors - Process integration, devices, and struc-

tures. (2013). http://www.itrs.net/.
T. S. Karkhanis and J. E. Smith. 2004. A first-order superscalar processor model. In Proceedings of the

International Symposium on Computer Architecture (ISCA).
R. E. Kessler. 1999. The Alpha 21264 microprocessor. IEEE Micro (March 1999).
P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S. O’Donnell, and J. C.

Ruttenberg. 1993. The Multiflow trace scheduling compiler. The Journal of Supercomputing 7, 1&2
(May 1993), 51–142.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Janapa Reddi, and K. Hazel-
wood. 2005. Pin : building customized program analysis tools with dynamic instrumentation. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

P. Michaud, Y. Sazeides, A. Seznec, T. Constantinou, and D. fetis. 2005. An analytical model of temperature
in microprocessors. Technical Report RR-5744. Inria.

P. Michaud, A. Seznec, and S. Jourdan. 2001. An exploration of instruction fetch requirement in out-of-order
superscalar processors. International Journal of Parallel Programming 29, 1 (Feb. 2001), 35–58.

S. Palacharla, N. P. Jouppi, and J. E. Smith. 1997. Complexity-effective superscalar processors. In Proceed-
ings of the International Symposium on Computer Architecture (ISCA).

R.P. Preston, R.W. Badeau, D.W. Bailey, S.L. Bell, L.L. Biro, W.J. Bowhill, D.E. Dever, S. Felix, R. Gam-
mack, V. Germini, M.K. Gowan, P. Gronowski, D.B. Jackson, S. Mehta, S.V. Morton, J.D. Pickholtz, M.H.
Reilly, and M.J. Smith. 2002. Design of an 8-wide superscalar RISC microprocessor with simultaneous
multithreading. In IEEE International Solid-State Circuits Conference (ISSCC).

E. M. Riseman and C. C. Foster. 1972. The inhibition of potential parallelism by conditional jumps. IEEE
Trans. Comput. 21, 12 (Dec. 1972).

E. Rotenberg. 1999. Trace Processors: Exploiting Hierarchy and Speculation. Ph.D. Dissertation. University
of Wisconsin - Madison. Section 5.3.2.

E. Rotenberg, S. Bennett, and J. E. Smith. 1996. Trace cache: a low latency approach to high bandwidth
instruction fetching. In Proceedings of the International Symposium on Microarchitecture (MICRO).

E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith. 1997. Trace processors. In Proceedings of the Inter-
national Symposium on Microarchitecture (MICRO).

P. Salverda and C. Zilles. 2005. A criticality analysis of clustering in superscalar processors. In Proceedings
of the International Symposium on Microarchitecture (MICRO).

22

A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. 2002a. Design tradeoffs for the Alpha EV8 conditional
branch predictor. In Proceedings of the International Symposium on Computer Architecture (ISCA).

A. Seznec and P. Michaud. 2006. A case for (partially) tagged geometric history length branch prediction.
Journal of Instruction Level Parallelism (Feb. 2006).

A. Seznec, E. Toullec, and O. Rochecouste. 2002b. Register write specialization register read specialization:
a path to complexity-effective wide-issue superscalar processors. In Proceedings of the International
Symposium on Microarchitecture (MICRO).

T. Sha, M. M. K. Martin, and A. Roth. 2005. Scalable store-load forwarding via store queue index prediction.
In Proceedings of the International Symposium on Microarchitecture (MICRO).

B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A. Van Norstrand, B. J. Ronchetti, J. Stuecheli,
J. Leenstra, G. L. Guthrie, D. Q. Nguyen, B. Blaner, C. F. Marino, E. Retter, and P. Williams. 2011. IBM
POWER7 multicore server processor. IBM Journal of Research and Development 55, 3 (May 2011).

B. Sinharoy, J. A. Van Norstrand, R. J. Eickemeyer, H. Q. Le, J. Leenstra, D. Q. Nguyen, B. Konigsburg, K.
Ward, M. D. Brown, J. E. Moreira, D. Levitan, S. Tung, D. Hrusecky, J. W. Bishop, M. Gschwind, M.
Boersma, M. Kroener, M. Kaltenbach, T. Karkhanis, and K. M. Fernsler. 2015. IBM POWER8 processor
core microarchitecture. IBM Journal of Research and Development 59, 1 (Jan. 2015).

S. Subramaniam and G. H. Loh. 2006. Fire-and-forget: load/store scheduling with no store queue at all. In
Proceedings of the International Symposium on Microarchitecture (MICRO).

P. H. Thomas. 1957. Some conduction problems in the heating of small areas on large solids. Quarterly
Journal of Mechanics and Applied Mathematics 10, 4 (1957).

S. Vajapeyam and T. Mitra. 1997. Improving superscalar instruction dispatch and issue by exploiting dy-
namic code sequences. In Proceedings of the International Symposium on Computer Architecture (ISCA).

V. V. Zyuban and P. M. Kogge. 2001. Inherently lower-power high-performance superscalar architectures.
IEEE Trans. Comput. 50, 3 (March 2001).

