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Abstract
The idea of only knowing is a natural and intuitive
notion to precisely capture the beliefs of a knowl-
edge base. However, an extension to the many
agent case, as would be needed in many applica-
tions, has been shown to be far from straightfor-
ward. For example, previous Kripke frame-based
accounts appeal to proof-theoretic constructions
like canonical models, while more recent works in
the area abandoned Kripke semantics entirely. We
propose a new account based on Moss’ character-
istic formulas, formulated for the usual Kripke se-
mantics. This is shown to come with other bene-
fits: the logic admits a group version of only know-
ing, and an operator for assessing the epistemic en-
trenchment of what an agent or a group only knows
is definable. Finally, the multi-agent only knowing
operator is shown to be expressible with the cover
modality of classical modal logic, which then al-
lows us to obtain a completeness result for a frag-
ment of the logic.

1 Introduction
Suppose a modeler were to provide a collection of logical sen-
tences Σ as a knowledge base to characterize an agent. One
would expect that the beliefs of the agent would be exactly
those that follow from Σ.1 However, in classical epistemic
logic [Fagin et al., 1995], Kα does not preclude K(α ∧ β)
from holding in general. So unless Σ carefully includes both
the beliefs and non-beliefs of the agent, it is not the case the
KΣ can succinctly characterize all the beliefs of the agent.

In this regard, the idea of only knowing is a natural and in-
tuitive notion to precisely capture the beliefs of a knowledge
base. First introduced by Levesque [1990], it enriches classi-
cal epistemic logic with a new operator O, the idea being Op
holds precisely when the worlds considered possible by the
agent are all and only those where p holds. So, Op ⊃ K p and
more interestingly, Op ⊃ ¬Kq. For knowledge-based agents,

∗Partially funded by the FWO project on Data Cleaning and KU
Leuven’s GOA on Declarative Modeling for Mining and Learning.

1In this work, we do not differentiate between “knowledge” and
“belief”, and use these terms interchangeably.

in particular, this seems like the right kind of modality to in-
clude in our language. And indeed, it is very closely related
to important concepts such as minimal knowledge [Halpern
and Moses, 1984]. The main difference being that the logic
of only knowing includes the O modality in the language,
whereas in [Halpern and Moses, 1984], knowledge minimiza-
tion is purely a meta-theoretic concept; so, only knowing has
some advantages.

Somewhat surprisingly, extending only knowing’s sim-
ple semantics to the many agent case has been far from
straightforward. Independently, Halpern [1993] and Lake-
meyer [1993] attempted extensions, but these were shown
to exhibit unintuitive properties [Halpern and Lakemeyer,
2001]. In later work, Halpern and Lakemeyer [2001] do
manage to capture only knowing, but by appealing to proof-
theoretic constructs such as canonical models in the seman-
tics. (Canonical models, moreover, which are based on sets
of maximally consistent sets of formulas, are also perhaps
not realizable in practice.) The approach of Waaler and Sol-
haug [2005] was based on model-theoretic constraints, which
as the authors admit, “is complex and hard to penetrate”. Fi-
nally, in more recent work, Belle and Lakemeyer [2010] show
how the proof-theoretic construction of [Halpern and Lake-
meyer, 2001] can be avoided to naturally capture multi-agent
only knowing, but at the cost of introducing a semantics that
significantly deviates from the classical (that is, Kripke) ac-
count.

The purpose of this paper is to revisit the notion of multi-
agent only knowing, but to phrase the truth conditions in
terms of the usual Kripke framework in a natural way, that
is, by avoiding canonical models and other proof-theoretic
machinery. There are several reasons why this is being at-
tempted. Formulating the account in a more familiar truth
theory has the advantage that deep results known in other ar-
eas of modal logic can finally be put in the context of only
knowing. Indeed, as one would observe, the basis for our re-
construction is Moss’ investigation into normal forms [Moss,
2007], which itself is inspired by and builds on the seminal
work of Fine [1975]. Second, we show how the multi-agent
only knowing modality developed here can be expressed in
terms of the cover modality [D’Agostino and Lenzi, 2005],
which is intimately connected to co-algebras and their role in
central results on modal logic, such as interpolation and Beth
definability. In the longer term, a multi-agent only know-
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ing framework in classical modal logic would be more ac-
cessible for dynamic epistemic logic based knowledge repre-
sentation languages [Demolombe, 2003; Herzig et al., 2000;
van Ditmarsch et al., 2011]. In sum, only knowing is arguably
an essential companion to the classical knowledge operator
in AI applications, and the work considered here would allow
modal logicians to use it more readily.

The paper is organized as follows. In Section 2, we recall
the essentials of epistemic logic and characteristic formulas,
as introduced by Moss, together with some related results
used in the sequel. Then, in Section 3, we define our logic
with our specific truth conditions for the multi-agent only
knowing connectives which use the characteristic formulas.
In Section 4, we compare and relate formally our logic and
our definition of multi-agent only knowing with the recent
approach proposed by Belle and Lakemeyer [2010]. In Sec-
tion 5, we present the cover modality and establish formally
its connection with our multi-agent only knowing modality.
This allows us in Section 6 to axiomatize the validities of our
logic once it is extended with the cover modality. We discuss
other related efforts in Section 7 before concluding.

2 Preliminaries
In this section, we first recall the basics of epistemic logic.
Then, we introduce the characteristic formulas for modal
logic as defined by Moss and recall a number of results about
these formulas that will be used in the rest of the article.

2.1 Epistemic Logic
In the rest of the paper,P is a set of propositional letters called
atomic facts and A is a finite set whose elements are called
agents.
Definition 1 (Language L). We define the language L in-
ductively as follows.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | K jϕ | CGϕ

where G ⊆ A, j ∈ A and p ∈ P. In the sequel, we use the
following abbreviations:

EGϕ �
∧
j∈G

K jϕ; K̂ jϕ � ¬K j¬ϕ; ĈGϕ � ¬CG¬ϕ

Let ϕ ∈ L. The modal depth of ϕ, denoted d(ϕ),
is defined inductively as follows: d(p) = 0, d(ϕ ∧ ψ) =
max{d(ϕ), d(ψ)}, d(¬ϕ) = d(ϕ), d(K jϕ) = d(ϕ) + 1 and
d(CGϕ) = d(ϕ) + 1. The set of propositional letters appearing
in ϕ is denoted P(ϕ).

The formula K jϕ reads as “agent j Knows ϕ”. Dually,
the formula K̂ jϕ reads as “agent j considers it possible that
ϕ holds”. The formula EGϕ reads as “everybody in group
G knows that ϕ holds”. Common knowledge of ϕ means
that everybody knows that ϕ but also that everybody knows
that everybody knows ϕ, that everybody knows that every-
body knows that everybody knows ϕ, and so on ad infini-
tum. Formally, this corresponds to the following formula
CGϕ := EGϕ∧ EGEGϕ∧ EGEGEGϕ∧ . . . , and is infinitary in
nature. But as we do not allow infinite conjunction, the com-
mon knowledge operator is introduced as a primitive connec-
tive in our language.

PL Axioms and Inference Rules of Prop. Logic
Dist K j(ϕ→ ψ)→ (K jϕ→ K jψ)
E EAϕ↔

∧
j∈A

K jϕ

Mix CAϕ→ EA(ϕ ∧CAϕ)
Ind if ϕ→ EA(ψ ∧ ϕ) then ϕ→ CAψ

Figure 1: Proof System L for L

A (pointed) epistemic model (M,w) represents how the
actual world represented by w is perceived by the agents.
Atomic facts are used to state properties of this actual world.

Definition 2 (Epistemic model). An epistemic model is a
tuple M = (W,R,V) where:

• W is a non-empty set of possible worlds,

• R : G → 2W×W is a function assigning to each agent
j ∈ G an accessibility relation on W,

• V : Φ → 2W is a function assigning to each proposi-
tional letter of Φ a subset of W. V is called a valuation.

We write w ∈ M for w ∈ W, and (M,w) is called a pointed
epistemic model (w often represents the actual world). If
w, v ∈ W, we write wR jv for R( j)(w, v). Finally, we write

R j(w) :=
{

v ∈ W
∣∣∣∣∣ wR jv

}

RG(w) :=

v ∈ W
∣∣∣∣∣ v ∈

⋃
j∈G

R j

+

(w)

 .
Intuitively, in the definition above, v ∈ R j(w) means that at

w, the agent j believes that v might be the real world.
The truth conditions of K jϕ are defined in such a way that

K jϕ holds in a possible world when ϕ holds in all the worlds
agent j considers possible.

Definition 3 (Truth conditions). Let M be an epistemic
model, w ∈ M and ϕ ∈ L. Then, M,w |= ϕ is defined in-
ductively as follows:

M,w |= p iff w ∈ V(p)
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= K jϕ iff for all v ∈ R j(w), we have M, v |= ϕ
M,w |= CGϕ iff for all v ∈ RG(w), we have M, v |= ϕ

We write M |= ϕ when M,w |= ϕ for all w ∈ M, and |= ϕ
when for all epistemic models M, M |= ϕ. In that latter case,
we say that ϕ is L-valid.

The following theorem shows that the set of validities of L
can be axiomatized by the proof system L.

Theorem 1. The proof system L for L defined in Figure 1 is
sound and strongly complete forL w.r.t. the class of epistemic
models.
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2.2 Characteristic Formulas
We will resort in our definitions and proofs to particular kinds
of modal formulas which capture the structure of epistemic
models (modulo bisimulation) up to a given modal depth.
These formulas were defined by Moss [2007] and are very
similar to the normal forms for modal logic as introduced by
Fine [1975].2

In what follows, we use S and E, possibly decorated with
superscripts and subscripts, to denote sets of formulas. The
subscripts refer to constructions using inductive definitions.
When the superscript is an agent index j or the group G, it
means that the formulas in the set are in the context of K j and
CG respectively.

Definition 4. [Moss, 2007] Let P ⊆ P be finite. We induc-
tively define the sets EP

n as follows:

EP
0 =

{ ∧
p∈S 0

p ∧
∧

p∈P−S 0

¬p
∣∣∣∣∣ S 0 ⊆ P

}

EP
n+1 =

{
δ0 ∧

∧
j∈A

∧
δ∈S j

n

K̂ jδ ∧ K j

∨
δ∈S j

n

δ




∧
∧
G⊆A

∧
δ∈S G

n

ĈGδ ∧CG

∨
δ∈S G

n

δ


∣∣∣∣∣ δ0 ∈ EP

0 and S j
n, S G

n ⊆ EP
n

}
.

An element δ of EP
n with n > 0 will often be written as follows

(note that the S j
n are replaced by R j(δ) and the S G

n are replaced
by RG(δ)):

δ = δ0 ∧
∧
j∈G

 ∧
δ j∈R j(δ)

K̂ jδ j ∧ K j

∨
δ j∈R j(δ)

δ j


∧

∧
G⊆Agt

 ∧
δG∈RG(δ)

ĈGδG ∧CG

∨
δG∈RG(δ)

δG

 .
Basically, a characteristic formula δn+1 provides a complete

syntactic representation of a pointed epistemic model up to
modal depth n + 1. So, intuitively, if we view a characteris-
tic formula δn+1 of EP

n+1 as the syntactic representation up to
modal depth n + 1 of a possible world w where it holds, a for-
mula δn of S j

n can also be viewed as a syntactic representation
up to modal depth n of a possible world accessible by R j from
w.

The following proposition not only tells us that a formula
δn completely characterizes the structure up to modal depth
n of any pointed epistemic model where it holds (first item),
but also that the structure of any epistemic model up to modal
depth n can be characterized by such a δn (second item).

Proposition 1. [Moss, 2007] Let P ⊆ P be finite, let n ∈ N
and let δ ∈ EP

n . Let ϕ ∈ L such that d(ϕ) ≤ n and P(ϕ) ⊆ P.

2Halpern and Lakemeyer [2001] discuss a similar normal form
in the context of only knowing.

Then, the following hold:

Either |= δ→ ϕ or |= δ→ ¬ϕ.

|=
∨
δ∈EP

n

δ.

The following corollary is also used in the sequel. It states
that any formula can be reduced to a disjunction of δs. (Thus,
they are referred to as normal forms.) The decomposition
of a formula ϕ into δs syntactically (and precisely) captures
the relevant structure of the set of pointed epistemic models
which make ϕ true. Put differently, each δ can be seen as a
syntactic description of the modal structure (up to depth n and
modulo bisimulation) of a pointed epistemic model which
makes ϕ true.

Corollary 1. Let ϕ ∈ L and let k ∈ N. Let P := P(ϕ) and let
n = d(ϕ) + k. Then, there is S ϕ

n = {δ1
n, . . . , δ

m
n } ⊆ EP

n such that

|= ϕ↔
∨
δ∈S ϕ

n

δ.

Moreover, for each n, this set S ϕ
n is unique.

3 Defining Multi-Agent Only Knowing
We define our logic for multi-agent only knowing in two
steps. First, we define a language where we cannot nest the
multi-agent only knowing connectives. Then, we generalize
it to allow for an arbitrary nesting of these connectives.

3.1 A Constrained Logic
The class of models for our first logic is the class of epistemic
models. Only the syntax of the logical language and the truth
conditions change, because the language is extended with
only knowing operators. Our first language is in fact an exten-
sion of the language ONL−n of Belle and Lakemeyer [2010],
in the sense that no connector Ok

j or Ok
G may occur in the

scope of a K j, a Ok
j or a Ok

G.

Definition 5 (Language LO
G−). We define the languages LO

G−
inductively as follows.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | K jϕ | Ok
jψ |

CGϕ | Ok
Gψ

where ψ ∈ L, k ∈ N, G ⊆ Agt, j ∈ A, and p ∈ P. The
formulas O jϕ and OGϕ are abbreviations for O0

jϕ and O0
Gϕ

respectively.

The formula Ok
jψ reads “the agent j only believes (knows)

ψ up to degree k” and the formula Ok
Gψ reads “the group of

agents G only believes (knows) ψ up to degree k”.

Definition 6 (Truth conditions for LO
G−). The satisfaction

relation |= between pointed epistemic models and formulas of
LO

G− is defined inductively as follows. The basic case as well
as the cases for the connectives ¬,∧,K j and CG are defined
like in Definition 3. We only define the cases for Ok

j and Ok
G.

Let M be an epistemic model, w ∈ M and let ψ ∈ L. Let
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n = k + d(ψ) and let X ∈ A ∪ 2A. Then,

M,w |= Ok
Xψ iff for all v ∈ RX(w) there is δ ∈ S ψ

n
such that M, v |= δ,

and for all δ ∈ S ψ
n there is v ∈ RX(w)

such that M, v |= δ

We recall that the finite set S ψ
n = {δ1, . . . , δm} ⊆ EP

n (where
P = P(ψ)) is such that |= ψ↔

∨
δ∈S ψ

n

δ.

Let ϕ ∈ LO
G−. We write M |= ϕ when M,w |= ϕ for all

w ∈ M, and |= ϕ when for all epistemic models M, M |= ϕ.
The intuition underlying our definition of the truth condi-

tion for our multi-agent only knowing operator can be ex-
plained as follows. As noted in the previous section, each δ of
S ψ

n can be seen as a syntactic description of the modal struc-
ture (up to depth n and modulo bisimulation) of a pointed
epistemic model which makes ψ true. So, the agent (or the
group of agents) only knows ψ if she considers possible all
and only the possible worlds that make ψ true, disregarding
the structure of these worlds after a certain depth k: the big-
ger k is, the more entrenched this knowledge will be. Note
that if we restrict our setting to the propositional case with a
single agent, then we recover the original definition of only
knowing as defined by Levesque [1990].

Importantly, note that we do not need to resort to an op-
erator N jϕ like in the usual definitions of multi-agent only
knowing. Instead, we refer in the semantics to characteristic
formulas and our only knowing operator is introduced here as
a primitive connective.
Example 1. One would think that this constrained language
is little more than the single agent version, that is, formulas
such as Oi p ⊃ ¬Kiq are the only interesting valid sentences in
this logic. In fact, this language can be used to capture multi-
agent autoepistemic defaults [Lakemeyer, 1993].3 Suppose p
denotes a secret, and consider the default assumption that if i
has no knowledge of j knowing the secret, then it is the case
that j does not know it. Let δ = ¬KiK j p ⊃ ¬K j p.

It can now be shown that if δ is the only formula that i only
knows, then, Oiδ ⊃ Ki¬K j p is a valid sentence. That is, i
actually believes that j does not know p. Note, for example,
adding objective knowledge to i’s knowledge does not change
his conclusion, that is, |= Oi(p ∧ δ) ⊃ Ki¬K j p. Of course, if
i where to believe that j indeed knows p, this conclusion is
now retracted: |= Oi(p ∧ δ ∧ K j p) ⊃ KiK j p.

3.2 A Logic of Multi-Agent Only Knowing
As in the logic of the previous section, the class of models
is again the class of (pointed) epistemic models. Only the
syntax of the logical language changes, the satisfaction rela-
tion and the class of models remains the same as before. The
syntax of this full language is, in fact, an extension of the
language ONLn of Belle and Lakemeyer [2010]. Like for
ONLn, we also allow an arbitrary nesting of the connectors
K j, Ok

j and Ok
G.

3Levesque [1990] had previously shown that only knowing a
subjective formula can capture such defaults in the single agent case.

Definition 7 (Languages LO
G and LO). The language LO

G is
defined inductively as follows.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | K jϕ | Ok
jϕ |

CGϕ | Ok
Gϕ

where k ∈ N, G ⊆ Agt, j ∈ A and p ∈ P. The formulas O jϕ

and OGϕ are abbreviations for O0
jϕ and O0

Gϕ respectively. We
define the languageLO as the languageLO

G without the group
connectives CG and Ok

G.
Proposition 2. Let k ∈ N and ψ ∈ L. Let P := P(ψ) and n =
d(ψ)+k. Then by Corollary 1, there is S n = {δ1

n, . . . , δ
m
n } ⊆ EP

n

such that |= ψ ↔
∨
δn∈S n

δn. Then, we have that the following

holds:

|= Ok
jψ↔

∧
δ∈S n

K̂ jδ ∧ K j

∨
δ∈S n

δ

 (1)

and

|= Ok
Gψ↔

∧
δ∈S n

ĈGδ ∧CG

∨
δ∈S n

δ

 . (2)

Proof. It follows straightforwardly from the truth conditions
for Ok

j and Ok
G. qed

Corollary 2. Let k ∈ N and ϕ ∈ LO
G. Let P := P(ϕ) and

n = d(ϕ) + k. Then, there is S ϕ
n = {δ1

n, . . . , δ
m
n } ⊆ EP

n such that

|= ϕ↔
∨
δ∈S n

δ.

Moreover, for each n, this set S ϕ
n is unique.

Proof. The proof is by induction on the nesting depth n of
operators Ok

j and Ok
G. The base case n = 0 holds trivially by

definition. The induction step is proved by applying Proposi-
tion 2: the right-hand sides of Expressions (1) and (2) do not
contain operators Ok

j and Ok
G. qed

Definition 8 (Truth conditions for LO
G). The truth condi-

tions are exactly the same as in Definition 6. When |= ϕ holds
for some ϕ ∈ LO

G, we say that ϕ is LO-valid.
Example 2. With the enriched language, we can handle en-
tailments of the sort:

|= Ki(p ∧ O jq) ⊃ KiK jq ∧ Ki¬K j p

That is, if i believes p and also believes j to only know q,
he not only knows that j knows q (as in classical epistemic
logic) but also knows that j does not know p (a property of
only knowing).

As an extension to our previous example, suppose ξ says
that if i does not believe p is the only thing that j knows then
it is the case that j knows more. That is,

ξ = ¬KiO j p ⊃ ¬O j p

We can then show that Oiξ ⊃ Ki¬O j p is a valid sentence, that
is, i believes that j knows more than p.
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Given the reading of our graded multi-agent only knowing
operator, we have the following expected result, which is the
counterpart of [Belle and Lakemeyer, 2010, Theorem 5]: if
an agent (or a group of agents) only knows that ϕ holds up
to a certain degree, then she also only knows it up to a lower
degree.
Proposition 3. Let m, n ∈ N such that n ≥ m and let ϕ ∈ LO

G.
Let j ∈ A and G ⊆ A. Then, the following holds:

On
jϕ→ Om

j ϕ On
Gϕ→ Om

Gϕ

Proof. The proof follows the same lines as the proof of [Belle
and Lakemeyer, 2010, Theorem 5]. Let (M, v) be a pointed
epistemic model. First, one should observe that for all δm ∈

EP
m, there is δn ∈ S δm

n such that M, v |= δn if, and only if,
M, v |= δm (this δn depends on the structure of (M, v) beyond
modal depth m). Vice versa, for all δn ∈ EP

n , there is δm ∈ EP
m

such that M, v |= δn if, and only if, M, v |= δm (this δn does
not depend on the structure of (M, v) beyond modal depth m).
From this observation and by examining the truth conditions
of Definition 6, we conclude easily that our two implications
hold. qed

However, the reverse implications in Proposition 3 do not
hold necessarily, because of the dependence on the structure
of (M, v) in the first case. We now explore the relation to
the Belle and Lakemeyer scheme in more detail in the next
section.

4 Relation to Belle and Lakemeyer
First, we recall the essentials of the approach of Belle and
Lakemeyer [2010]. They do not consider only knowing op-
erators dealing with groups of agents and do not consider
degrees of only knowing as we do. Moreover, and without
loss of generality, we assume that there are only two agents:
A := {a, b}, as in [Belle and Lakemeyer, 2010]. Then, we
consider the fragment ONLO

n of the language LO
G defined as

follows:
Definition 9 (LanguagesONLn andONLO

n ). The language
ONLn is defined inductively as follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | K jϕ | N jϕ

where p ∈ P and j ∈ A. The formula O jϕ is an abbreviation
for K jϕ ∧ N j¬ϕ. The language with the connectives ¬,∧,K j

and O j (instead of N j) is denoted ONLO
n .

The semantics of Belle and Lakemeyer [2010] is based on
the notion of k-structures. We consider a non-empty set of
possible worlds W which simply consists of all the propo-
sitional valuations for the propositional letters in P. A k-
structure (k ≥ 1), say ek, for an agent is defined inductively
as follows:
• e1 ⊆ W × {{}},
• ek ⊆ W × Ek−1, where Em is the set of all m-structures.

A e1 for a, denoted as e1
a, is intended to represent a set of

worlds {(w, {}), . . .}. A e2 is of the form {(w, e1
b), (w′, e′1b ), . . .},

and it is to be read as “at w, a believes b considers worlds from
e1

b possible but at w′, a believes b to consider worlds from

e′1b possible”. This conveys the idea that a has only partial
information about b, and so at different worlds, a believes
different things about b.

We define a ek for a, a e j for b and a world w ∈ W as a
(k, j)-model (ek

a, e
j
b,w). Only formulas of a maximal a-depth

of k, and a maximal b-depth of j are interpreted w.r.t. a (k, j)-
model. (See [Belle and Lakemeyer, 2010] for more details on
these notions; definitions are not reproduced here.) The truth
conditions are defined as follows:

ek
a, e

j
b,w |= p iff p ∈ w

ek
a, e

j
b,w |= ¬ϕ iff it is not the case that ek

a, e
j
b,w |= ϕ

ek
a, e

j
b,w |= ϕ ∧ ψ iff ek

a, e
j
b,w |= ϕ and ek

a, e
j
b,w |= ψ

ek
a, e

j
b,w |= Kaϕ iff for all (w′, ek−1

b ) ∈ ek
a,

we have that ek
a, e

k−1
b ,w′ |= ϕ

ek
a, e

j
b,w |= Naϕ iff for all (w′, ek−1

b ) < ek
a,

we have that ek
a, e

k−1
b ,w′ |= ϕ

With these definitions and our abbreviations, we have that

ek
a, e

j
b,w |= Oaϕ iff for all worlds w′, for all ek−1 for b,

(w′, ek−1
b ) ∈ ek

a iff ek
a, e

k−1
b ,w′ |= ϕ

We say that a formula ϕ ∈ ONLO
n is BL-valid when it is valid

in the sense of Belle and Lakemeyer [2010], that is when it is
true in all (k, j)-models, if ϕ is of a-depth k and b-depth j.

We now show that the set of BL-validities for the language
ONL

O
n is the same as the set of validities in our logic LO.

Lemma 1. Let ϕ ∈ ONLO
n be a formula of a-depth k and

of b-depth j. Then, for all (k, j)-models (ek
a, e

j
b,w), there is a

pointed epistemic model (M,w) such that ek
a, e

j
b,w |= ϕ if, and

only if, M,w |= ϕ. Vice versa, for all pointed epistemic models
(M,w), there is a (k, j)-model (ek

a, e
j
b,w) such that ek

a, e
j
b,w |=

ϕ if, and only if, M,w |= ϕ.

Proof. For the first part, the worlds of M are w and all the k′–
structures and the j′–structures present in ek

a and e j
b. The val-

uations and the accessibility relations for these worlds are de-
fined canonically. For the second part, we unravel the pointed
epistemic model (M,w) up to modal depth k for the worlds ac-
cessible from w by a and up to modal depth j for the worlds
accessible from w by b (see [Blackburn et al., 2001]). qed

Theorem 2. A formula ϕ ∈ ONLO
n is LO-valid if, and only if,

it is BL-valid.

Proof. It follows from the previous Lemma 1. qed

Note that, unlike the approach of Belle and Lake-
meyer [2010], we can simultaneously satisfy an infinite set
of sentences of unbounded modal depth.

5 The Cover Modality
The cover modality∇ has been used as a syntactic primitive in
modal logics [D’Agostino and Lenzi, 2005]. It has recently
been axiomatized [Bılková et al., 2008]. Here, we define a
multi-modal version of this cover logic.
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Definition 10 (Language L∇). The language L∇ is defined
inductively as follows.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ∇ j{ϕ, . . . , ϕ}

where j ∈ A and p ∈ P. Moreover, we use the following
abbreviations: K jϕ := ∇ j∅ ∨ ∇ j{ϕ}.

Definition 11 (Truth conditions for L∇). The satisfaction
relation |= is defined like in Definition 6 for the base case and
for the connectives ¬ and ∧. For the cover modalities, the
truth conditions are defined as follows:

M,w |= ∇ j{ϕ1, . . . , ϕm} iff

for all v ∈ R j(w) there is i ∈ {1, . . . ,m}
such that M, v |= ϕi,
and for all i ∈ {1, . . . ,m} there is v ∈ R j(w)
such that M, v |= ϕi.

Note that |= K̂ jϕ ↔ ∇ j{>, ϕ}. Likewise, we can define
our multi-agent only knowing modalities Ok

j with the cover
modality as follows.

Proposition 4 (Expressiveness of the cover modality). Let
ϕ ∈ LO

G and k ∈ N. Let P := P(ϕ) and n = d(ϕ) + k. Then for
all pointed epistemic model (M,w), we have that the follow-
ing holds: for any j ∈ A,

M,w |= Ok
jϕ iff M,w |= ∇ j{δ1, . . . , δm}

where {δ1, . . . , δm} ⊆ EP
n is such that |= ϕ↔ δ1 ∨ . . . ∨ δm.

Proof. It follows straightforwardly from the truth conditions
of the multi-agent only knowing operators Ok

j and Ok
G given

in Definition 6. qed

The above proposition shows that L∇ is at least as expres-
sive as LO on the class of epistemic models. Therefore:

Theorem 3 (Decidability of LO). Let ϕ ∈ LO. The problem
of determining whether ϕ is LO-valid is decidable.

Proof. The proof follows from the fact that L∇ is at least as
expressive as LO on the class of epistemic models by Propo-
sition 4 and the fact that the validity problem of L∇ is decid-
able, as shown by Bılková et al. [2008]. qed

6 Proof System
To define the proof system for L∇, we need to introduce
some further notations. Typically, formulas of L∇ are de-
noted ϕ, ψ, . . ., finite sets of formulas are denoted α, β, . . . and
sets of sets of formulas are denoted A, B, . . .

We define the (power set) lifting of the relation ∈⊆ L∇×2L∇

as the relation ∈ ⊆ 2L∇ × 22L∇ given by α∈A if, and only if,
for all ϕ ∈ α, there is β ∈ A such that ϕ ∈ β, and for all β ∈ A,
there is ϕ ∈ α such that ϕ ∈ β.

Let E be a non-empty set. An object A ∈ 22E
is a redis-

tribution of a set B ∈ 22E
if α∈A for all α ∈ B (hence in

particular
⋃

B ⊆
⋃

A). We call such a redistribution slim if

moreover
⋃

B =
⋃

A. The set of all slim redistributions of
A is denoted by S RD(A).

(∇0) Axioms and Inference Rules of Prop. Logic
(∇1) If ∀ϕ ∈ α,∃ψ ∈ β such that ϕ→ ψ,

and ∀ψ ∈ β,∃ϕ ∈ α such that ϕ→ ψ
then ∇ jα→ ∇ jβ

(∇2)
∧{

∇ jα

∣∣∣∣∣ α ∈ A
}
→∨{

∇ j

{∧
ϕ

∣∣∣∣∣ ϕ ∈ B
} ∣∣∣∣∣ B ∈ S RD(A)

}
(∇3) ∇ j

{∨
ϕ

∣∣∣∣∣ ϕ ∈ A
}
→

∨{
∇ jβ

∣∣∣∣∣ β∈A
}

Figure 2: Proof System L∇ for L∇

Theorem 4. [Bılková et al., 2008] The proof system L∇ de-
fined in Figure 2 is sound and strongly complete for L∇ w.r.t.
the class of epistemic models.

We are going to extend the language of L∇ in order to in-
clude explicitly the only knowing operator that we introduced
in Section 3. Since this modality is definable in terms of the
cover modality by Proposition 4, we straightforwardly obtain
an axiomatization of this extended language.
Definition 12 (Language LO

∇
). The language LO

∇
is defined

inductively as follows.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ∇ j{ϕ, . . . , ϕ} | Ok
jψ

where ψ ∈ LO, k ∈ N, j ∈ A and p ∈ P. Moreover, we use
the following abbreviation: K jϕ := ∇ j∅ ∨ ∇ j{ϕ}.

The truth conditions are defined like in Definition 3 for the
base case and for the connectives ¬ and ∧. For the cover
modalities, the truth conditions are defined like in Definition
11, and for the multi-agent only knowing modality the truth
conditions are defined like in Definition 6.
Theorem 5. The proof system LO

∇
is the proof system L∇ of

Figure 2 to which we add the following inference rule: for all
j ∈ A, for all ϕ ∈ LO, for all k ∈ N,

(Ok
j) If ϕ↔ δ1 ∨ . . . ∨ δm with {δ1, . . . , δm} ⊆ EP

n

then Ok
j(ϕ)↔ ∇ j{δ1, . . . , δm}

where n := d(ϕ) + k and P := P(ϕ).
Then, the proof system LO

∇
is sound and strongly complete

for LO
∇

w.r.t. the class of epistemic models.
Proof. The proof of soundness is standard. Completeness is
obtained by observing that Theorem 4 gives us completeness
for the language L∇ without the multi-agent only knowing
modality. Then, we obtain completeness for the full language
LO
∇

because the multi-agent only knowing modality is defin-
able in terms of the cover modality by Proposition 4 and this
definition corresponds in fact to our inference rule (Ok

j). qed

The language LO
∇

is an extension of the language LO of
Section 3 with the cover modality. From Theorem 5, we ob-
tain a soundness and completeness result for this restricted
language LO:
Corollary 3. Let ϕ ∈ LO. Then, ϕ is derivable in the proof
system LO

∇
if, and only if, ϕ is LO-valid.
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7 Other Related Work
Besides the immediately relevant work already discussed
above, let us note the following related efforts.

Minimal knowledge approaches have also enjoyed multi-
agent extensions [Hoek and Thijsse, 2002]. While minimal
knowledge is related to only knowing, it differs in the sort of
conclusions one can draw. We refer readers to [Levesque and
Lakemeyer, 2001] for discussions. A related proposal is that
of total knowledge [Pratt-Hartmann, 2000], where knowledge
is required to be true. So defaults, for example, would lead to
an inconsistency.

Although defaults are not the focus of this paper, there are
also proposals that study the interaction between knowledge
and defaults in a multi-agent setting, such as [Morgenstern,
1990]. In terms of proof theory, Bonatti and Olivetti [2002],
among others, have developed proof systems for such de-
faults. The relation between concepts like only knowing and
this work, however, remains to be explored.

Finally, there are numerous modal logics for multi-agent
systems for concepts such as beliefs, dynamics, and de-
sires, which we do not review here. See [van der Hoek and
Wooldridge, 2012; Fagin et al., 1995] and references therein.
Only knowing is not considered by these, however.

8 Conclusion
We investigated a new version of multi-agent only knowing
in the classical Kripke setting, while putting it in context of
existing proposals on this topic. This comes with a number of
benefits – for example, the definability with the cover modal-
ity, a group version of multi-agent only knowing, and an op-
erator for assessing the epistemic entrenchment of what an
agent or a group only knows – while avoiding proof-theoretic
constructions.

At this point, the development of this paper could lead to
dynamic logic based representation formalisms such as [van
Ditmarsch et al., 2011] finally embracing the only knowing
modality in a multi-agent and dynamic setting. These for-
malisms are also based on a Kripke semantics.
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