A Note on the Transience of Critical Branching Random Walks on the Line

Abstract : Gantert and Müller (2006) proved that a critical branching random walk (BRW) on the integer lattice is transient by analyzing this problem within the more general framework of branching Markov chains and making use of Lyapunov functions. The main purpose of this note is to show how the same result can be derived quite elegantly and even extended to the nonlattice case within the theory of weighted branching processes. This is done by an analysis of certain associated random weighted location measures which, upon taking expectations, provide a useful connection to the well established theory of ordinary random walks with i.i.d. increments. A brief discussion of the asymptotic behavior of the left- and rightmost particles in a critical BRW as time goes to infinity is provided in the final section by drawing on recent work by Hu and Shi (2008).
Type de document :
Communication dans un congrès
Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.421-436, 2008, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01194659
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 7 septembre 2015 - 12:50:42
Dernière modification le : mercredi 10 mai 2017 - 17:41:16
Document(s) archivé(s) le : mardi 8 décembre 2015 - 12:49:08

Fichier

dmAI0128.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01194659, version 1

Collections

Citation

Gerold Alsmeyer, Matthias Meiners. A Note on the Transience of Critical Branching Random Walks on the Line. Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.421-436, 2008, DMTCS Proceedings. 〈hal-01194659〉

Partager

Métriques

Consultations de la notice

60

Téléchargements de fichiers

62