The size of random fragmentation intervals

Abstract : Two processes of random fragmentation of an interval are investigated. For each of them, there is a splitting probability at each step of the fragmentation process whose overall effect is to stabilize the global number of splitting events. More precisely, we consider two models. In the first model, the fragmentation stops which a probability $p$ witch can not depend on the fragment size. The number of stable fragments with sizes less than a given $t \geq 0$, denoted by $K(t)$, is introduced and studied. In the second one the probability to split a fragment of size $x$ is $p(x)=1-e^{-x}$. For this model we utilize the contraction method to show that the distribution of a suitably normalized version of the number of stable fragments converges in law. It's shown that the limit is the fixed-point solution (in the Wasserstein space) to a distributional equation. An explicit solution to the fixed-point equation is easily verified to be Gaussian.
Type de document :
Communication dans un congrès
Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.519-530, 2008, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01194669
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 7 septembre 2015 - 12:50:52
Dernière modification le : mercredi 10 mai 2017 - 17:41:20
Document(s) archivé(s) le : mardi 8 décembre 2015 - 12:54:43

Fichier

dmAI0135.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01194669, version 1

Collections

Citation

Rafik Aguech. The size of random fragmentation intervals. Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.519-530, 2008, DMTCS Proceedings. 〈hal-01194669〉

Partager

Métriques

Consultations de la notice

104

Téléchargements de fichiers

125