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A Markov Chain Algorithm for determining
Crossing Times through nested Graphs
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Mathematisches Institut, Friedrich-Schiller-Univeigitlena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany,
uta@mathematik.uni-jena.de

2 Département de Mathématiques, Universite de Fribolgrolles, Chemin du musée 23, CH-1700 Fribourg,
Switzerland, christoph.thaele@unifr.ch

According to the by now established theory developed inrmieéefine a Laplacian or — equivalently — a Brownian
motion on a nested fractal, one has to solve certain renaatiain problems. In this paper, we present a Markov chain
algorithm solving the problem for certain classes of sinfpdetals K provided that there exists a unique Brownian
motion and hence, a unique Laplacianfn

Keywords: (nhested) fractal, self—similarity, walk dimension, ciogstime

1 Introduction

In the last 20 years, there has been a powerful ’hand in haenBldpment of approaches to define a
'natural’ Laplacian or a 'natural’ Brownian motion on frats. The connection between the two problems
is obvious: InR™, the Laplacian is the infinitesimal generator of the stad@ownian motion, which can
be obtained as the limit of renormalized random walks. Taisaspondence can be used in order to define
a Laplacian on fractal sets which are often used to modedi'witregular’, and 'rough’ things. Fractals
are non—differentiable objects because the classicabmaii a 'tangent space’ is not available, thus a
Laplacian can not be defined explicitly as a differentialrapar; however, the construction of a random
walk does not require a differentiable structure. Hencefitist steps in this direction have been made by
people defining a Laplacian on so—callegkted fractalgwe will not define here what a nested fractal is,
see Lindstrgm (Lin90)) as the infinitesimal generator of eBrian motion. (The classical reference on
this topic is (Lin90), as a first introduction we recommenel @ery nice survey by Barlow (Bar89).) The
main challenge in following this stochastic approach isrtid fiut the right time—space scaling of a random
walk on the fractal graph implied by the iterated functiostsyn describing the fractal. By self similarity,
the same scaling property holds on every magnification leegling to a sequence of appropriate scaled
random walks converging to Brownian motion on the fractal.

Let us illustrate the problem a bit better with the help of thedel case of th&ierpinski gasket. Pose

TThis work was supported by the Schweizerischer Nationdagrant SNF PP002-114715/1
1365-80500C) 2008 Discrete Mathematics and Theoretical Computer Seié@MTCS), Nancy, France
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Fig. 1: The Sierpinski gasket

A = (0,0), B := (1,0) andC := (3, \/75). So A, B andC are the vertices of a unilateral triangle of
unit side length. The Sierpinski gask&€ (2) (this notation is chosen in view of Section 3.1) is defined
to be the unique nonempty compact set, which is self-simiiér respect to the family of similarity
contractionsF := {¢1, 12,93} (i.e. K = Uf’zl ¥;(K)) where the mappings; : R? — R? are
just given by the unique contractive similitude with cowitian ratio% and fixed points4, B andC
respectively. It is easy to check that the famous open saliton (OSC) is satisfied by choosing the
open se to be the interior of the triangl& ABC. Hence, the Hausdorff dimension of the Sierpinski
gasket equaldy = }ﬁ—g (see for example (Fal85)). Obviously, the Sierpinski gagkénitely ramified,
which means that a removal of the middle poiaf$ andc from the line segment8C, AC and AB
makes it a disconnected set.

We introduce the vertex sé&t := {4, B, C'} and the set ofirst—order approximating points

3
‘/1 = U 1/%(V0) = {AaBa Caavba C}

i=1
(see Figure 2, and also Figure 3).

In order to get the natural time—space scaling of a randork erathe corresponding fractal graph, we
will use the notion ofvalk dimensionWe recall here the definition of walk dimension for the corieane
of the reader, but in a heuristic way only. While the Hausiddirhension somehow relates the volume
of small balls with their radii, the walk dimension relategam exit times (of the 'canonical Brownian
motion’) from balls with the radii of these balls. Hence, thalk dimension describes the time-space-
scaling of a random walk or a stochastic process.
Let 7(B(z, R)) denote the exit time of a stochastic proc&sstarting at time 0 inz from a ball with
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radiusR. Then the walk dimension is defined by

 InE7T"(B(z,R))

dw = R . Q)
In graph theory, the limit a&® — oo of the latter term is taken, but we will see, that in the casieanftals
(due to the self-similarity) we will have a reasonable vdbreiy, independently ofR.
The local symmetry and the self—similarity of the fractad (@ell as of the approximating set$, see
Figure 3 below) in connection with the arising (naturalpsty reflection principle of the corresponding
random walks lead to the helpful observation that exit tiffresn balls equal crossing times through
subgraphs of/,. Thus, we can reformulate our leaving—a—ball—problem Hsvis: Supposing that the
random walk starts in a vertex &f), we ask for the expected time of the first hittingasfothervertex of
Vo provided that we move along the edged/®f To be more concrete, we assume that we stas and
want to pass through the graphigf until we reachB or C. In the following consideration&r" denotes
the expected time moving from a poiRtto the sef B, C'}. Starting in pointd and making one step, we

Fig. 22 Random walk on the graph with vertex 34t

can reach either poimtor pointe, both of them with probabilityt /2 (all notations of this paragraph refer
to Figure 2). Hence, we have

Erd = % (ETb+ETC) +1=Er°+1.

Note that our hitting problem is symmetric with respect te $fymmetry axis of the triangle mappibtp
c. This impliesEr*=Er¢. Similar observations lead to

1
Erc = —(IETA+ETb+ETa+ETB)+1:

1 (Er* + Er° + E7%) + 1

W~ | =

and
a 1 C b c B 1 c
Er :Z(ET +Er’ + Er¢+E7 )+1:§ET +1,

taking into account thakr? = E7¢ = 0. From the last three equations one easily calculates teat th
mean graph crossing time dqualsT” = Er4 = 5. Hence, it takes in expectation five steps (of length
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one) to leave a ball of radius two. By the self similarity oétBierpinski gasket and the Markov property
of the random walks it readily verifies that this time—spawating will occur on all magnification scales,
and also in the limit approaching continuous time (see dl§m0)). Thus, the walk dimension of the

. . . _ 1 5
Sierpinski gasket equalky = 13-

In order to explain the corresponding analytic counterpag. to find theanalytic renormalization
factor let us firstly emphasize that the construction of the Laplacin a nested fractals deeply relies on
its finite ramification. Such sets can be approximated by areasing sequence of finite séi§,),,>o.

see Figure 3. As done above, $gt:= { A, B, C} and define inductively;, := Uf’zl Yi(Vi—1),n > 1.

. o o )

Fig. 3: The approximating sef&, V1, V> andV3

Denote
wjl,,,jn =1, 0...0%; , Jjk € {1,2,3}, k=1,...n, neN

and
le---jn = wjlmjn (VO)'

We say thap, ¢ € V,, aren—neighboursf there exists av—tuple of indiceqj1, ..., j») € {1, 2,3}" such
thatp,q € Vj,.. ;.. Every pointp in V,,\V, has fourn—neighbourg; € V,, denoted in the following by
q ~n p. We say that any two points frof) form a pair of zero—neighbours. Further, we set

Vei=J Vo= lim V.

n—00
n>0

It holds thatK = V/, (the bar denotes the closure with respect to Euclidean norm)

As in the stochastic approach explained above, also aoajytntities on a fractal are approximated by
discrete structures. In particular, the energy of a fumctia the Sierpinski gasket which is the 'fractal
analogue’ of the Euclidean standard energy fém| = [ |[Vu|?dz is obtained as the limit of certain
discrete 'pre-energies’ defined on finite s@t5 ) approximating the fractal. For a general outline of the
theory see for example the monograph (Kig01), for a shovtesuwe refer to the first authors paper (F05).
For any function: : V., — R, these pre—energies are defined by

et = (3) 3 S uo -l oz @

The numbep = % is theenergy scaling factodetermined by the Gaussian principle as follows: Suppose
we are given the values of a functianon the setlyy, sayu(A) = ua, u(B) = up andu(C) = uc.
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According to (2), we have that
Eolu] = (ua —up)® + (ua — uc)® + (up — uc)? (3)
and
€ifu] = 3 [(w(a) — up)® + (u(a) — uc)? + (up — u(c))®

Hua —u(b)® + (ua —u(e)® + (u(b) — uc)? (4)
+(u(a) — u(c))® + (u(a) — u(b))® + (u(b) — u(c))?]

W ot

_l’_
_l’_

(see also Figure 2 on Page 503 for a better illustration). \venmize &, [u] with respect to the values
u(a),u(b),u(c), i.e. we are seeking for thearmonic extensiowf the functionu from V; to V; (see
(BFO7) for a recently developed algorithm calculating shahmonic extensions with the help of a chaos
game algorithm). Here, a simple calculation leads to thémibers

u(a) = (ug + 2up + 2ue)/5, u(b) = (2ug +up + 2uc)/5 and wu(c) = (2ua + 2up + uc)/5,

and in view of (3) and (4) we obtain thét [u] = &y[u] for this harmonic extension. In other wordg;3
is the unique numbey, satisfyingmin{€;[v] : vy, = u} = &qu], if we would use the general ansatz

Enlu] :=0" > D (ulp) —ulg)®, n>0

pEV, q~np

Note that by self-similarity and finite ramification it holth&atmin{&, [v] : vy, = u} = Eo[u] for all

n > 1. Using the appropriate energy scaling factor, the sequeique— energies converges to a Dirichlet
form leading to the notion of Laplacian by the Gauss—Greammdila (see (Kig01) and the references
therein). In (KigLap93), the authors prove that for a nestadtal the exponents of the leading term in
the eigenvalue counting function of this Laplacian satsfie/2 = In M/ In(M o), whereM denotes the
number of similitudes in the iterated function system arttie energy scaling factor introduced above.
The numberis is usually called thepectral dimensionf the corresponding set.

It is reasonable to expect that the geometrical feature afdy has influence on spectral asymptotics
of its 'natural’ Laplacian as well as to the behavior of it@faral’ Brownian motion. In fact, such an
interaction can be expressed by a so-calletstein relationimplicating Hausdorff, spectral and walk di-
mension, expressing geometric, analytic and stochagtectsof a set (see (GM83), (Tel06), and (Zho93)
as related references). Einstein’s relation in its 'dini@mal form’ reads

2dp = dsdw, (5)

wheredy, ds anddy, denote Hausdorff, spectral and walk dimension respegtivi@king into account
thatdy = l“lnMT (wherer < 1 denotes the contraction ratio of the similitudes, see &jat8 the original

paper (Hut81)), it can be transformed into a relationship/ben the energy scaling facteand the mean
crossing timel" introduced above:

Mo=T, (6)
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where M denotes the number of similitudes in iterated functioneystHence, it is sufficient to know
only one of the numbergandT in order to give a full quantitative analytic and stochad#scription of
the setK. However, the identification of both of the numbers requicesolve a system of linear equa-
tions. These equations can be found by analyzing graphassh Figure 2, in particular by evaluating
the ramification properties of the figure.

The aim of this paper is to present an algorithm that enalde® uletermine such crossing timés
(and hence, by relation (6) the corresponding energy sgédictor o) without relying on a sketch — like
we did in the calculations belonging to Figure 2. We presquira graph theoretical approach using the
connection matrix of the underlying graph only. The develbplgorithm founds on Markov chain theory
and can be calculated by a computer. An implementation u\sdiagle® is demonstrated in Section 4
below. Another advantage is that the calculations are iedéent of the ambient space, in particular
independent of its dimension (see the example of SierpsEkées, discussed in Subsection 3.2). In the
present paper, we restrict ourselves to the case of isotfagitals, i.e. in a metric sense we assume that
each edge in the graph has the same length and that the grsiple its self—similarity carries a high
number of symmetries. In the forthcoming paper (FTa) we wébken these assumptions.

2 A first example: The Sierpinski gasket

The aim of this section is a demonstration of our algorithrthim case of the classical Sierpinski gasket
SG(2). This can be considered somehow as a counterpart to thelimtion, where the crossing time
was calculated by a method which relies more or less on theretavision of the set. Define nawy :=

A =(0,0), vz :== B = (1,0) andvz := C = (3, @). Then the Sierpinski gask&tG(2) is the unique
nonempty compact set which is self-similar with respechfamily of similaritiesF’ := {1, ¥9, ¢35}

(cf. Section 1). An illustration of this set is provided bygbrel. As before, denot&}, denote the set of
verticesVy = {4, B,C} andV; := Ule ©v; (Vo) = {A, B,C,a,b,c}, see Figure. The setl} can be
considered as a graph with adjacency matrix

Ap =

|
o
e )
—_ O =
O = =
v

We also need to introduce ti@ x 9)-block matrix

Ay 0 0
A= 0 AO 0 .
0 0 A
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The so-calledonnection matrixof the graph; is the following symmetri¢9 x 9)—matrix

_ O OO oo oo
oo oo+ OOo

Q

Il
coocococoocoocoo
coococoor~roOO
corroocoocooO
coocococoo RO
coocococoocoocoo
coo~OoOOCOO
coocococoooco o

o
o

Its interpretation is the following: Each rowand each columr represent vertices,w € V;. The
numbers and; have a unique representatios: 3 - iy 4+ io andj = 3 - j; + ja, Whereio — 1 =i mod 3
andj; — 1 = j mod 3. The verticesv andv then correspond to the rows and columns in the following
way: v = 1, (v, ) andw = 1, (v;,). The entryl in row (column)i and column (row); means that
the vertices corresponding t@ndj are glued together in the graph. For examplabs(vi) = 11 (v2),
which means that the entry in rofvand columni equalsl. By the symmetry assumption @nwe also
have al in row 4 and columr2. The entry0 in the matrixC' means that the corresponding vertices remain
not connected by an edge. For the input of the algorithm itfcsent to give in the codes of pairs of
vertices which we want to glue together. In our special chseare the three pairs

12 = 21,
13 = 31,
23 = 32.

It is worth to be pointed out here, that the latter fact camggessed in a mathematically precise manner
by using the notion otode spaceg¢see (B08) for the very latest insight into that topic as veslithe
authors references listed therein). According to this aagi, every point in the Sierpinski gask&t(2)

has an adress in the spage 2, 3}V. Theadress functiomr : {1,2, 3} — SG(2) given by

(o) := lim g, 0...0%,, (z0), 0 =010903... € {1,2,3}1, @
n—oo
is well defined as the limit in (7) is a singleton which doesaepend oy € R2. Note thatr is onto, but
in general not one—to—one (unless the fractal under coragide is totally disconnecetd as for example
famous Cantor set). In terms of the adress function, theextivity property above reads

7(12) = 7(21), n(13) = 7(31) andw(23) = 7(32).

Itis now an easy task to construct the matrhfrom this data using the facts from above.
We remark: If one transforms the matrikinto a stochastic matrix in the obvious way, this would lead
to a transition matrix of a Markov chain, whose states forneghdisconnected triangles. It is now our
aim to couple these triangles with the help of the conneatiatrix C' = (cij)?_’jzl. The next step of
the algorithm is the following loop: Put firgt:= 1 andj := 1. If ¢;; = 1 then add row to row j and
columns to columnj. If i < j thenincreaseby 1, i.e.i:=1i + 1, else increasg by one and reset i.e.
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j:=j+1,i:=1untlj=9. The resulting9 x 9)-matrix will be denoted byl’. This procedure will
be explicitly demonstrated on this example in Section 4.

011 100 100
101 000 1 00
110 1.0 0 00O
101 011 1 10
A=fo 00 101 010
000 110 0O0O0
110 100 011
000 110 101
0 00 00O 1T T1PO0

In the language of graphs, the matrX is the adjacency matrix of the graph shown in Figure 4. For our

Fig. 4. Graph with adjacency matrik’

purpose we have to identify the verticeand3, 5 and7 and6 and8. For doing so, the next step of our
algorithm is the following: If in the connection matrix; = 1 for somel < j < ¢ < 9 then delete row
and column numbet. Do this for all entries o' and turn the result into thé x 6) stochastic matrix
A", i.e. divide each entry by the number of non-zero elemerits iow. In our special case this results:

A// —

O Owim OrI= O
O = o= O Nl
Ohlmr O ORIm O
V== O O kol
= O — O
Okl O O O
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If we delete in a further step the rows and columns corresipgnith the essential fixed points of the
iterated function systerfi)y, v2, 3}, this leads to a Markov chain with two cemeteries (in thisnepke
the pointsB and(C') which is shown in Figure 5. The resulting (substochastia)rm is calledA”’ and is

Fig. 5. Markov chain corresponding to the transition matix

in our special case given by

o 2 1 ¢
Lo r 0 o1
_ 4
el

0 3 3 0

To calculate the crossing time of the graigh we have to solve the following linear system
Er = A"Er + 1, (8)

wherel = (1,1,1,1)7 andEr is the vectorEr = (Er#,Erb,Er¢,Er*)T (the upperl’ denotes the
transpose) anl7" is the mean number of steps a walker needs from vertexone of the vertice® or
C (compare with Figure 2). The crossing tirfieve are looking for is given bf” = Er4 = 5, which is
easily calculated by hand or using a computer—algebraersyas Mapl@. By doing so, we get that the
whole vectofir equalsEr = (5,4, 4, 3).
As mentioned at the beginning of this section, our methodiigdes an algorithmic approach for the
calculation of mean crossing times. In the introduction alkewalated the same valdé= 5 for the mean
crossing time of the Sierpinski graph using explicitly the ramification properties ®f. This leads to
earnest problems for other examples as for example for thergbzed Sierpinski gaskets&(m) (see
Section 3.1 below) for large:. In these cases it is a difficult and longish task to write ddkalinear
system

Er = A"Er +1
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by hand using the ramification properties of the graph. Irepmproach only the adjacency matrly of

and the upper triangle of the connection matrinr the identification pairs are needed. The establishment
of the linear system and its solution is then reduced to matanipulations which can easily implemented
on aPC. Since we are interested in exact values (i.e. fragtfor the crossing tim& instead of numerical
values, we decided to implement the algorithm with the cot@palgebra—system Ma[% This will be
explained in detail in Section 4.

3 Generalizations of the Sierpinski gasket

3.1 Generalized planar Sierpinski gaskets

By a generalized Sierpinski gasket we mean the followingstroistion: Divide a (regular) trianglé
into m2, m > 2, smaller triangles, such that they form a replicating diiea of A (this is a self-
similar dissection, where all the pieces are congruenthpaoe with Figure 6 for the case = 4. This

c

Y 'V VN
Y'YV VN

A B

Fig. 6: Replication dissection oA into 16 pieces. The gray triangles form tieneratorof SG(4).

dissection consists of two types of triangles: those whietsamilar toA without a rotation (these are the
gray colored triangles in Figure 6) and those similar copfe& which are rotated (this is for the example
m = 4 the white piece of Figure 6). We hawé := m(m + 1)/2 triangles of the first aneh(m — 1)/2

of the second type. The removing of all rotated small triaadéads to a generator of a self-similar set,
which we want to calbeneralized Sierpinski triangle, SG(m). It is straight forward to compute the
Hausdorff dimension of G(m) as

_Inm+In(m+1) —In2

: 9)

by using the well known dimension formula for self-similats which can be found for example in
(Fal85) or in the original paper (Hut81). It is also possitdedescribeSG(m) as the attractor of an
iterated function system with appropriate mappitigs..., ¢»s all having contraction ratid/m. Take the
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three vertices ofA as a starting sét, and defind/; to be the set of points given by

M
Vii= | en (V).
k=1

It is our aim to study some Markov chains defined \dn For the graph/y, we have the following
adjacency matrix

01 1
Ag=[1 0 1
110

Obviously,4, has rank3. We now define the following3M x 3M )-block matrix

Ay, 0 0 - 0
0 A 0 - 0
A—l0 0 4 - 0
0 0 0 - A

One can also computé as follows: Let&, = (e;)i=7"/~"" such that

5 /14

k :{11i:j+(k—1)

er.
” 0: else,

wherek = 0,..., M. ThenA is representable as
M
A= (B Ao B} (10)
k=1

This formula will be useful for the implementation of the atghm in Section 4.

Each block ofA is the adjacency matrix of a subtriangleAf If one would transform the matrid into

a stochastic matrix - in the obvious way - then this matrix ldatorrespond to the transition matrix of
a Markov chain which states form the verticesidfdisconnected triangles. This ak¢ Markov chains,
each of them acting independent of the others on one sugkeiaRor the construction of a Markov chain
on V4, some further steps are necessary.

Let the vertices ofA be labelled byd, B andC. We can now assign to each vertesf the subtriangle the
addressyj, wherev = v;(v;). To obtain a Markov chain of; we must identify some of the the points

ij. In V; we have3 vertices of degre@, 3(m — 1) of degreet and%(m — 1)(m — 2) of degrees. Thus,

we need3(m — 1) + 2% = m? — 1 identifications. This are
M
L = {(kz—l—l) {7] =(k+2)1: k—0-~-m—2},

e { (b DY g VBB
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k=0---m—2},
13_{(km+W+m—k—1)M
_(km—l- (2 k>+2m—2k—1> B/[]:k_o---m—Q},
14={ —(+m- k—l)[ﬂﬂ (+m— k—l)[];[]z(l—i—m—k)l
;z;A( +(k+1)2( k)),(km—i—W—i—m—k),k:o...m—?,}.

The relationdl;, I, and I3 are the identifications of the points on the boundary (thexeltegreet), I,
contains those of all the other points (having degieeAs in the last section, these identification can
be coded in the upper triangle of the so-called connectiomixn@ of dimension3M x 3M. With this
identifications in form of the matrig’ = (cl-j)?fj”:l it is now possible to obtain a Markov chain &h by a
coupling of the Markov chains of each subtriangle. The athoiic construction of the transition matrix

runs as follows:
1. Puti := 1 andj := 1 and put in the matriced andC.

2. If ¢;; = 0 then go to the next step.
If ¢;; = 1 the add row to row j and columr to column; and to the next step.

3. Puti :=i+ 1luntili < j. If i = jtheni =1, j := j + 1. Repeat step 2.
4. Call the resulting matrixd’.
5. Putagain := 1andj := 1.
6. If ¢;; = 0 then go to the next step.
If ¢;; = 1 then delete row and column with numbién A’. Go to the next step.
7. Puti :=i+ luntili < j. If i = jtheni:=1,j:= j + 1. Repeat step 6.

8. Transform the actual matrix into a stochastic mattik= (a;) by puttinga}; := a};/n;, where
n; 1S the number of non-zero elements of raw

9. Delete the two rows and columns corresponding to thecesB andC' and call the resultl’”.

A detailed calculation was provided in the last sectionier¢ase 06G(2). For SG(3), we only quote
the resulting matrixd””:

A —

O oO*IFel- 5 owi- o
ORI Ol o Orlrvl—
il S e el o PN N o)
Bl= ORlFoI= Ol o o
Bl= O Qom0 o O
ORrlIFelFa- O O o O

O O O Owi-oOniro
O O O°IFL i~ O~
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The sub—stochastic matrik”” is the transition matrix of a Markov chain with two cemetsritefined
on Vi. We are interested in the crossing time of this chain stguitinA4, this is the mean number of
steps one needs from to one of the other verticeB or C' following the transition rules given by””.
Therefore we have to solve the following equation

Er = A"Er +1,

whereEr = (ET!,...,ET%)T (as in the last section, the first component refers to the #Ajt1 =
(1,..,1)T andk = #V; — 2 = 2m? + 2m — 1 is the dimension (or size) of””. The crossing time we
are looking for isET4 := E7!. In the case o5G/(3) we get
Erd = =,
7
Our algorithm results fom = 2 the valugEr4 = 5, which is well known from the last section. We sum-
marize here the values for the crossing tiféor the generalized Sierpinski gaskét&(2), ..., SG(7):

|m | T(m)=Er" | nT(m)/Inm |

2 5 2,3219
3 90/7 2,3247
4 1030/41 2,3254
5| 8315/197 2,3255
6 | 452739/7025 2,3249
7 | 904836,9823 2,3244

Firstly, we declare that fom = 2,...,5 our values agree with those obtained in (GM83). Secondly, we
want to point out that the explicit formula for the crossiimge 7'(m) is still unknown for arbitrarym.
From (9) one sees thdi; (SG(m)) — 2 asm — oo which is clear, becaus&G (m) approaches a filled
triangle asn — oo. Hence, also the spectral dimensignwill converge to2 which yields in view of (5)

the conclusion thady (SG(m)) — 2 as well asn — co. So, by (1) it should hold that

InT
T AU NPY (11)
m—oo Inm
However, the above table documents some abnormalitieg ioathvergence behavior L(m) for small

m. This might come from the fact that the number of verticesrimadegree and4 is dominant compared
with the number of degreé—vertices. This effect disappearers with growingnd in the limit case, (11)
holds.

3.2 Sierpinski spaces

In the last section we considered a planar analogue of tesickd Sierpinski gaskétG(2). Another way
of generalizingsG (2) is a lifting of the construction to higher dimensional Edelan spaceR”, D € D.

This section is devoted to the calculation of their meansirggstimes.

We will understand under the canoni@ierpinski spaceS(D) in RP the set obtained from th®-—

dimensional unit simplex with vertex s8p = {z1,...,2zp+1} and the iterated function system made
from the D + 1 contractive similitudes (all with ratid/2) given by
1

1Di(x)::zi+§(ar—zi), zeRPi=1,...,D+1.
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The construction is shown fdp = 3 in Figure 7. Note that we obtain the usual Sierpinski gaske(2)

in D = 2, while the construction i) = 1 leads to the unit interval. In this way, one obtains a fulleca
of models with increasing ramification complexity.

As SS(D) consists of D + 1 smaller copies of itself (each scaled by the factor 1/2),oidh that

dgSS(D) = % (see (Fal85) or (Hut81) again). It is an interesting obsiewma that therefore

the Hausdorff dimension of the fractdlS(D) in R?, R”, R, ... R?"~1 .. is an integer! In fact, the
Hausdorff dimension of the Sierpinski—Tetrahedron showFigure 3.2 equals 2. An analysis on the

Sierpinski space$'S(D) has been developed in (Kig89), and from the results in (K3 it easily

verifies that the spectral dimensidpSS(D) = %.

Fig. 7: The first four construction steps of Sierpinski-Tetrahad®ierpinski space iiR>)

Thus, by Einstein’s relation (5) it should hold for the wallmension thatdyySS(D) = 2(0+3)

In fact, our algorithm becomes rather simple for these nwdal yields this result. The result can be
obtained as well by an elementary proof:

Proposition 3.1 The mean crossing time through the graph belongin§$¢D) equalsD + 3, D € N..

Proof: DenoteVy := 8p = {z1,...,2p+1} and defind’ to be the graph with vertex s&f and edges
joining each pair of different points; and z; from the setl,. SetV; := Uf’;{l (Vo). Fix a starting
point A € Vj and start a random walk on the graph obtained by applying #ygingsy, ..., ¥p41 to
the graphl’. We have to find out the mean number of steps the walker nee@stt one of the other
verticesvy, ...,vp in Vj.

Firstly, we observe that according to this problem we magirdisiish four different kinds of points i,
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namely: The point itself; the other vertices,,...,vp in Vy (kind 2'); those points one can reach in
one step from ('kind 2’ — these are the midpoints of the edges joinihgith one of the points from kind
z); and finally those points which are midpoints of the edgeting two different point of kindz ('kind

y"). Note that we haveD points of kindx and (g’) points of kindy. In the following considerations,

ErP, P € {A,x,y, z} denotes the expected number of steps moving from the gb{ot, from a point
of kind z, y or z respectively) to the s, . ..,vp}. Of courseEr* = 0.
Starting fromA, we certainly move to a point of kind, thus we have

Ert = Er” + 1. (12)

Sitting at a point of kindz, we can reacR D neighbours (all of them with the same probability).— 1
of these neighbours are the other points of kinane neighbour isi, D — 1 neighbours are of king,
and one neighbour of kind This leads to

D-1 1

T x - A Yy
Er =3p Er —|—2DET + 5D ErY + 1. (13)
Finally, similar considerations yield
2 2(D —2)
Yy 2 W Y
Er 5D Er* + 5D ErY +1. (24)
From (12), (13), and (14) we g&r4 = D + 3. O

4 A Note on the Implementation using Maple®

In this section we explain briefly the implementation of olgiaaithm using the computer—algebra—system
Maple®. We decided to use Mar@, because it is possible here to do symbolic calculation aaémy
numerical ones. This advantage results exact values farrtssing times we are looking for (compare
this with Section 3.1). The implementation can also be donany other computer—algebra—systems
as for example Mathemati® or MATLAB®. In Maple® we used only standard commands and the
I i nal g—package. Itis now an easy task to implement steps 1 - 9 ofgbethm described in section 3.1
using loops and the commanadr ow, adcol , del r ows, del col s andmul r ow. We like to remark
here that the results of all these operations can also b&eldthy matrix multiplications and are therefor
independent of Map@.

At this point we want to indicate the complexity of our alghm. As mentioned above, the procedure
to get A’ can be done only by using loops of certain matrix multiplimas. It is well known (see for
example (J04) or (Knu90)) that schoolbook matrix multigtions have a cubic complexity, i.€(n?).

For the solution of the resulting linear system, we need verirthe matrixA”” and to multiply this in-
verse with a vector. The last task has@fm?)-complexity. Using the Coppersmith-winograd-Algorithm
(CW90), the complexity of matrix multiplications and ingéns can be reduced @(n?37), which is

at the moment the best known bound. Hence, we can concludelliwing:

Theorem 4.1 The algorithmic complexity of our algorithm is of ord@¥n?-37¢).
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5 Outlook

In the forthcoming paper (FTb), we will extend our approazhkelf similar graphs obtained from regular
n—gons. In Figure 8, the first two nontrivial examples are gigeote that the self-similar set obtained
from a square would be the square). The main differenceas ntbw a fixed poinf from the vertex set

Fig. 8 Self—similar Pentagasket and Hexa—Snowflake

Vo has zero—neighbours of different type depending on howfaryahe other vertex is fron®. So, in
the Pentagasket graph we have two types of neighbours, whileave three types of neighbours in the
Hexa—gasket case. In (FTb), we will discuss two possiblecghes, namely the first one is allowing the
random walk to visit only nearest neighbours of a point inghaph, while the second approach allows
the particle also to move through cells where the transpiababilities reflect the distances the particle
has to overcome. Hence, one has to deal wigighted adjacency matricésstead. Hereby, the main
challenge is to find out for which vectors of transition prbitiies the arising linear system (cf. (8)) has
a (unique) solution.
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