Error bounds in stochastic-geometric normal approximation

Abstract : We provide normal approximation error bounds for sums of the form $\sum_x \xi_x$, indexed by the points $x$ of a Poisson process (not necessarily homogeneous) in the unit $d$-cube, with each term $\xi_x$ determined by the configuration of Poisson points near to $x$ in some sense. We consider geometric graphs and coverage processes as examples of our general results.
Type de document :
Communication dans un congrès
Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.71-94, 2008, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01194682
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 7 septembre 2015 - 12:51:05
Dernière modification le : mercredi 10 mai 2017 - 17:41:04
Document(s) archivé(s) le : mardi 8 décembre 2015 - 12:59:57

Fichier

dmAI0104.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01194682, version 1

Collections

Citation

Mathew Penrose, Tom Rosoman. Error bounds in stochastic-geometric normal approximation. Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.71-94, 2008, DMTCS Proceedings. 〈hal-01194682〉

Partager

Métriques

Consultations de la notice

140

Téléchargements de fichiers

90