On the number of zero increments of random walks with a barrier

Abstract : Continuing the line of research initiated in Iksanov and Möhle (2008) and Negadajlov (2008) we investigate the asymptotic (as $n \to \infty$) behaviour of $V_n$ the number of zero increments before the absorption in a random walk with the barrier $n$. In particular, when the step of the unrestricted random walk has a finite mean, we prove that the number of zero increments converges in distribution. We also establish a weak law of large numbers for $V_n$ under a regular variation assumption.
Type de document :
Communication dans un congrès
Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.243-250, 2008, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01194687
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 7 septembre 2015 - 12:51:10
Dernière modification le : mercredi 10 mai 2017 - 17:41:10
Document(s) archivé(s) le : mardi 8 décembre 2015 - 13:02:37

Fichier

dmAI0115.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01194687, version 1

Collections

Citation

Alex Iksanov, Pavlo Negadajlov. On the number of zero increments of random walks with a barrier. Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.243-250, 2008, DMTCS Proceedings. 〈hal-01194687〉

Partager

Métriques

Consultations de la notice

151

Téléchargements de fichiers

85