The continuous limit of large random planar maps

Abstract : We discuss scaling limits of random planar maps chosen uniformly over the set of all $2p$-angulations with $n$ faces. This leads to a limiting space called the Brownian map, which is viewed as a random compact metric space. Although we are not able to prove the uniqueness of the distribution of the Brownian map, many of its properties can be investigated in detail. In particular, we obtain a complete description of the geodesics starting from the distinguished point called the root. We give applications to various properties of large random planar maps.
Type de document :
Communication dans un congrès
Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.1-18, 2008, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01194691
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 7 septembre 2015 - 12:51:13
Dernière modification le : mercredi 10 mai 2017 - 17:41:02
Document(s) archivé(s) le : mardi 8 décembre 2015 - 13:05:42

Fichier

dmAI0101.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01194691, version 1

Collections

Citation

Jean-François Le Gall. The continuous limit of large random planar maps. Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.1-18, 2008, DMTCS Proceedings. 〈hal-01194691〉

Partager

Métriques

Consultations de la notice

163

Téléchargements de fichiers

83