J. Adj-]-ambjørn, B. Durhuus, and T. Jonsson, Quantum geometry. A statistical field theory approach. Cambridge Monographs on Mathematical Physics, 1997.

. An and O. Angel, Growth and percolation on the uniform infinite planar triangulation, Geom. Funct. Anal, vol.3, pp.935-974, 2003.

. As, O. Angel, and O. Schramm, Uniform infinite planar triangulations, Comm. Math. Phys, vol.241, pp.191-213, 2003.

]. Bo, J. Bouttier, J. Bdg-]-bouttier, P. Di-francesco, and E. Guitter, Physique statistique des surfaces aléatoires et combinatoire bijective des cartes planaires Planar maps as labeled mobiles, Electronic J. Combinatorics, vol.11, p.69, 2004.

J. Bg-]-bouttier and E. Guitter, Statistics of geodesics in large quadrangulations, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.14, 2007.
DOI : 10.1088/1751-8113/41/14/145001

B. , E. Itzykson, C. Parisi, G. Zuber, and J. B. , Planar diagrams, Comm. Math. Phys, vol.59, pp.35-51, 1978.

. Bbi, D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol.33, 2001.

P. Cs-]-chassaing and G. Schaeffer, Random planar lattices and integrated superBrownian excursion, Probability Theory and Related Fields, vol.128, issue.2, pp.161-212, 2004.
DOI : 10.1007/s00440-003-0297-8

P. Cd-]-chassaing and B. Durhuus, Local limit of labeled trees and expected volume growth in a random quadrangulation, The Annals of Probability, vol.34, issue.3, pp.879-917, 2006.
DOI : 10.1214/009117905000000774

[. , R. Vauquelin, and B. , Planar maps are well labeled trees. Canad, J. Math, vol.33, pp.1023-1042, 1981.

T. Dl-]-duquesne and J. F. Le-gall, Probabilistic and fractal aspects of L???vy trees, Probability Theory and Related Fields, vol.101, issue.4, pp.553-603, 2005.
DOI : 10.1007/s00440-004-0385-4

]. Gr and M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, 2001.

[. Hooft and G. , A planar diagram theory for strong interactions, Nuclear Physics B, vol.72, issue.3, pp.461-473, 1974.
DOI : 10.1016/0550-3213(74)90154-0

]. Kr and M. Krikun, Local structure of random quadrangulations, 2006.

L. , S. K. Zvonkin, and A. K. , Graphs on surfaces and their applications, of Encyclopedia of Mathematical Sciences, 2004.

L. Gall and J. F. , Spatial branching processes, random snakes and partial differential equations, 1999.
DOI : 10.1007/978-3-0348-8683-3

L. Gall and J. , The topological structure of scaling limits of large planar maps, Inventiones mathematicae, vol.15, issue.3, pp.621-670, 2007.
DOI : 10.1007/s00222-007-0059-9

L. Gall and J. , Geodesics in large planar maps and in the Brownian map, Acta Mathematica, vol.205, issue.2, 2008.
DOI : 10.1007/s11511-010-0056-5

L. Gall, J. F. Paulin, and F. , Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere, Geometric and Functional Analysis, vol.18, issue.3, p.612315, 2006.
DOI : 10.1007/s00039-008-0671-x

L. Gall, J. F. Weill, and M. , Conditioned Brownian trees, Ann. Inst. H. Poincaré, Probab. Stat, vol.42, pp.455-489, 2006.

]. Mmi, J. F. Marckert, and G. Miermont, Invariance principles for random bipartite planar maps, Ann. Probab, vol.35, pp.1642-1705, 2007.

]. Mmo, J. F. Marckert, and A. Mokkadem, Limit of normalized quadrangulations. The Brownian map, Ann. Probab, vol.34, pp.2144-2202, 2006.

G. Mi2-]-miermont, Tessellations of random maps of arbitrary genus, Annales scientifiques de l'??cole normale sup??rieure, vol.42, issue.5, 2007.
DOI : 10.24033/asens.2108

G. Mw-]-miermont and M. Weill, Radius and profile of random planar maps with faces of arbitrary degrees, Electronic Journal of Probability, vol.13, issue.0, pp.706-3334, 2007.
DOI : 10.1214/EJP.v13-478

]. Po and H. Poincarépoincar´poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc, vol.6, pp.237-274, 1905.

]. Sc and O. Schramm, Conformally invariant scaling limits: an overview and a collection of problems, Proceedings of the International Congress of Mathematicians Madrid, pp.513-543, 2006.

W. T. Tu-]-tutte, A census of planar maps, Journal canadien de math??matiques, vol.15, issue.0, pp.249-271, 1963.
DOI : 10.4153/CJM-1963-029-x

]. We and M. Weill, Asymptotics for rooted planar maps and scaling limits of two-type Galton- Watson trees, Electron. J. Probab, vol.12, pp.862-925, 2007.