S. Mukherjee, D. Hanahan, G. Bergers, E. Bergsland, E. Pasquier et al., The Emperor of All Maladies: A Biography of Cancer Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice Metronomic chemotherapy: new rationale for new directions, J Clin Invest Nat Rev Clin Oncol, vol.10574, pp.1045-7455, 2000.

N. André, M. Carré, E. M. Pasquier, R. Gatenby, A. Silva et al., Adaptive Therapy doi:10.1158/0008?5472.CAN?08?3658. [6] Gatenby RA. A change of strategy in the war on cancer Experimental evaluation of potential anticancer agents XIII. On the criteria and kinetics associated with " curability " of experimental leukemia [8] Skipper HE. The effects of chemotherapy on the kinetics of leukemic cell behavior [9] Early Breast Cancer Trialists' Collaborative Group (EBCTCG) Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy, Nat Rev Clin Oncol Cancer Res Nature Cancer Chemother Rep Cancer Res Lancet, vol.11694593525339, pp.413-314894, 1964.

J. Goldie, A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate, Cancer Treat Rep, vol.63, pp.1727-1760, 1979.

E. Frei, E. Freireich, E. Gehan, D. Pinkel, J. Holland et al., Studies of Sequential and Combination Antimetabolite Therapy in Acute Leukemia: 6? Mercaptopurine and Methotrexate, Blood, vol.18, pp.431-54, 1961.

J. Spratt, D. Fournier, J. Spratt, and E. Weber, Decelerating growth and human breast cancer, Cancer, vol.45, issue.6, pp.2013-2022, 1993.
DOI : 10.1002/1097-0142(19930315)71:6<2013::AID-CNCR2820710615>3.0.CO;2-V

G. Steel and L. Lamerton, The growth rate of human tumours., British Journal of Cancer, vol.20, issue.1, pp.74-86, 1966.
DOI : 10.1038/bjc.1966.9

T. Wheldon, Mathematical models in cancer research, Hilger Bristol, 1988.

A. Laird, Dynamics of Tumor Growth, British Journal of Cancer, vol.18, issue.3, pp.490-502, 1964.
DOI : 10.1038/bjc.1964.55

L. Dethlefsen, J. Prewitt, and M. Mendelsohn, Analysis of tumor growth curves, J Natl Cancer Inst, vol.40, pp.389-405, 1968.

P. Sullivan and S. Salmon, Kinetics of tumor growth and regression in IgG multiple myeloma, Journal of Clinical Investigation, vol.51, issue.7, pp.1697-708, 1972.
DOI : 10.1172/JCI106971

L. Norton, A Gompertzian model of human breast cancer growth, Cancer Res, vol.48, pp.7067-71, 1988.

D. Hart, E. Shochat, and Z. Agur, The growth law of primary breast cancer as inferred from mammography screening trials data, British Journal of Cancer, vol.78, issue.3, pp.382-389, 1998.
DOI : 10.1038/bjc.1998.503

A. Casey, The Experimental Alteration of Malignancy with an Homologous Mammalian Tumor Material : I . Results with Intratesticular Inoculation, Am J Cancer, vol.21, pp.760-75, 1934.

L. Norton, R. Simon, H. Brereton, and A. Bogden, Predicting the course of Gompertzian growth, Nature, vol.25, issue.5586, pp.542-546, 1976.
DOI : 10.1038/264542a0

S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. Ebos et al., Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth, PLoS Computational Biology, vol.90, issue.8, 2014.
DOI : 10.1371/journal.pcbi.1003800.s010

G. West, A. Herman, M. Van, and . Savage, A Quantitative Theory of Solid Tumor Growth, Metabolic Rate and Vascularization, PLoS ONE, vol.6, 2011.

L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treat Rep, vol.61, pp.1307-1324, 1977.

G. Held, J. Schubert, M. Reiser, and M. Pfreundschuh, Dose-Intensified Treatment of Advanced-Stage Diffuse Large B-Cell Lymphomas, Seminars in Hematology, vol.43, issue.4, pp.221-230, 2006.
DOI : 10.1053/j.seminhematol.2006.07.003

G. Bonadonna, M. Zambetti, A. Moliterni, L. Gianni, and P. Valagussa, Clinical Relevance of Different Sequencing of Doxorubicin and Cyclophosphamide, Methotrexate, and Fluorouracil in Operable Breast Cancer, Journal of Clinical Oncology, vol.22, issue.9, 2004.
DOI : 10.1200/JCO.2004.07.190

M. Citron, D. Berry, C. Cirrincione, C. Hudis, E. Winer et al., Randomized Trial of Dose-Dense Versus Conventionally Scheduled and Sequential Versus Concurrent Combination Chemotherapy as Postoperative Adjuvant Treatment of Node-Positive Primary Breast Cancer: First Report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741, Journal of Clinical Oncology, vol.21, issue.8, pp.1431-1440, 2003.
DOI : 10.1200/JCO.2003.09.081

L. Norton and R. Simon, The Norton?Simon hypothesis revisited, Cancer Treat Rep, vol.70, pp.163-172, 1986.

R. Simon and L. Norton, The Norton???Simon hypothesis: designing more effective and less toxic chemotherapeutic regimens, Nature Clinical Practice Oncology, vol.10, issue.8, pp.406-413, 2006.
DOI : 10.1038/ncponc0560

P. Hahnfeldt, J. Folkman, and L. Hlatky, Minimizing Long-Term Tumor Burden: The Logic for Metronomic Chemotherapeutic Dosing and its Antiangiogenic Basis, Journal of Theoretical Biology, vol.220, issue.4, pp.545-54, 2003.
DOI : 10.1006/jtbi.2003.3162

R. Kerbel and B. Kamen, The anti-angiogenic basis of metronomic chemotherapy, Nature Reviews Cancer, vol.22, issue.6, pp.423-459, 2004.
DOI : 10.1200/JCO.2004.07.060

D. Liao, L. Estévez?salmerón, and T. Tlsty, Conceptualizing a tool to optimize therapy based on dynamic heterogeneity, Physical Biology, vol.9, issue.6, p.65005, 2012.
DOI : 10.1088/1478-3975/9/6/065005

R. Chisholm, T. Lorenzi, A. Lorz, A. Larsen, L. De-almeida et al., Emergence of Drug Tolerance in Cancer Cell Populations: An Evolutionary Outcome of Selection, Nongenetic Instability, and Stress-Induced Adaptation, Cancer Research, vol.75, issue.6, pp.930-939, 2015.
DOI : 10.1158/0008-5472.CAN-14-2103

URL : https://hal.archives-ouvertes.fr/hal-01237893

A. Lorz, T. Lorenzi, M. Hochberg, J. Clairambault, and B. Perthame, Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.2, pp.377-99, 2013.
DOI : 10.1051/m2an/2012031

URL : https://hal.archives-ouvertes.fr/hal-00714274

A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, and B. Perthame, Modeling the Effects of Space Structure and Combination Therapies on Phenotypic Heterogeneity and Drug Resistance in Solid Tumors, Bulletin of Mathematical Biology, vol.65, issue.1, pp.1-22, 2014.
DOI : 10.1007/s11538-014-0046-4

URL : https://hal.archives-ouvertes.fr/hal-00921266

T. Browder, C. Butterfield, B. Kraling, B. Shi, B. Marshall et al., Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug?resistant cancer, Cancer Res, vol.60, pp.1878-86, 2000.

P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res, vol.59, pp.4770-4775, 1999.

D. Onofrio, A. Gandolfi, A. Rocca, and A. , The dynamics of tumour-vasculature interaction suggests low-dose, time-dense anti-angiogenic schedulings, Cell Proliferation, vol.356, issue.18S, Suppl, pp.317-346, 2009.
DOI : 10.1111/j.1365-2184.2009.00595.x

D. Onofrio, A. Gandolfi, and A. , Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular n

D. Onofrio, A. Gandolfi, and A. , Resistance to antitumor chemotherapy due to bounded?noise?induced transitions, Phys Rev E, vol.82, 2010.

U. Ledzewicz and H. Schättler, AntiAngiogenic Therapy in Cancer Treatment as an Optimal Control Problem, SIAM Journal on Control and Optimization, vol.46, issue.3, pp.1052-79, 2007.
DOI : 10.1137/060665294

S. Benzekry, N. André, A. Benabdallah, J. Ciccolini, C. Faivre et al., Modeling the Impact of Anticancer Agents on Metastatic Spreading, Mathematical Modelling of Natural Phenomena, vol.7, issue.1, pp.306-342, 2012.
DOI : 10.1051/mmnp/20127114

URL : https://hal.archives-ouvertes.fr/hal-00657724

C. Faivre, D. Barbolosi, E. Pasquier, and N. André, A mathematical model for the administration of temozolomide: comparative analysis of conventional and metronomic chemotherapy regimens, Cancer Chemotherapy and Pharmacology, vol.82, issue.5, pp.1013-1022, 2013.
DOI : 10.1007/s00280-013-2095-z

D. Barbolosi, J. Ciccolini, C. Meille, X. Elharrar, C. Faivre et al., Metronomics chemotherapy: time for computational decision support, Cancer Chemotherapy and Pharmacology, vol.7, issue.3, pp.647-52, 2014.
DOI : 10.1007/s00280-014-2546-1

G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark et al., Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity, Journal of Clinical Investigation, vol.105, issue.8, pp.15-24, 2000.
DOI : 10.1172/JCI8829

G. Cramarossa, E. Lee, L. Sivanathan, S. Georgsdottir, L. K. Santos et al., A systematic literature analysis of correlative studies in low-dose metronomic chemotherapy trials, Biomarkers in Medicine, vol.8, issue.6, pp.893-911, 2014.
DOI : 10.2217/bmm.14.14

C. Meille, A. Iliadis, D. Barbolosi, N. Frances, and G. Freyer, An interface model for dosage adjustment connects hematotoxicity to pharmacokinetics, Journal of Pharmacokinetics and Pharmacodynamics, vol.63, issue.6, pp.619-652, 2008.
DOI : 10.1007/s10928-008-9106-4

C. Chaffer and R. Weinberg, A Perspective on Cancer Cell Metastasis, Science, vol.331, issue.6024, pp.1559-64, 2011.
DOI : 10.1126/science.1203543

S. Benzekry and P. Hahnfeldt, Maximum tolerated dose versus metronomic scheduling in the treatment of metastatic cancers, Journal of Theoretical Biology, vol.335, pp.235-279, 2013.
DOI : 10.1016/j.jtbi.2013.06.036

URL : https://hal.archives-ouvertes.fr/hal-00836032

D. Chen and I. Mellman, Oncology Meets Immunology: The Cancer-Immunity Cycle, Immunity, vol.39, issue.1, 2013.
DOI : 10.1016/j.immuni.2013.07.012

P. Sharma and J. Allison, The future of immune checkpoint therapy, Science, vol.348, issue.6230, pp.56-61, 2015.
DOI : 10.1126/science.aaa8172

H. Schättler, U. Ledzewicz, and B. Amini, Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, Journal of Mathematical Biology, vol.27, issue.2, pp.1-26
DOI : 10.1007/s00285-015-0907-y

J. Doloff and D. Waxman, VEGF Receptor Inhibitors Block the Ability of Metronomically Dosed Cyclophosphamide to Activate Innate Immunity-Induced Tumor Regression, Cancer Research, vol.72, issue.5, pp.1103-1118, 2012.
DOI : 10.1158/0008-5472.CAN-11-3380

C. Chen, J. Doloff, and D. Waxman, Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression, Neoplasia, vol.16, issue.1, pp.84-96, 2014.
DOI : 10.1593/neo.131910

I. Kareva, Immune evasion through competitive inhibition: The shielding effect of cancer non-stem cells, Journal of Theoretical Biology, vol.364, pp.40-48, 2015.
DOI : 10.1016/j.jtbi.2014.08.035

L. Galluzzi, L. Senovilla, L. Zitvogel, and G. Kroemer, The secret ally: immunostimulation by anticancer drugs, Nature Reviews Drug Discovery, vol.107, issue.3, pp.215-248, 2012.
DOI : 10.1038/nrd3626

J. Ciccolini, E. Pasquier, A. Lombard, S. Giacometti, C. Faivre et al., Computational?driven metronomics: application to gemcitabine in neuroblastoma?bearing mice, Abstract, vol.4506

B. Braakhuis, R. Van-haperen, V. Welters, M. Peters, and G. , Schedule-dependent therapeutic efficacy of the combination of gemcitabine and cisplatin in head and neck cancer xenografts, European Journal of Cancer, vol.31, issue.13-14, pp.2335-2375, 19901995.
DOI : 10.1016/0959-8049(95)00419-X

B. Braakhuis, R. Van-haperen, V. Boven, E. Veerman, G. Peters et al., Schedule?dependent antitumor effect of gemcitabine in in vivo model system, Semin Oncol, vol.22, pp.42-48, 1995.

F. André, J. Ciccolini, J. Spano, F. Penault?llorca, N. Mounier et al., Personalized medicine in oncology: where have we come from and where are we going?, Pharmacogenomics, vol.14, issue.8, pp.931-940, 2013.
DOI : 10.2217/pgs.13.79

C. Yang, J. Ciccolini, A. Blesius, L. Dahan, D. Bagarry?liegey et al., DPD-based adaptive dosing of 5-FU in patients with head and neck cancer: impact on treatment efficacy and toxicity, Cancer Chemotherapy and Pharmacology, vol.249, issue.1, pp.49-56, 2011.
DOI : 10.1007/s00280-010-1282-4

D. Ternant, G. Cartron, E. Hénin, M. Tod, P. Girard et al., Model-based design of rituximab dosage optimization in follicular non-Hodgkin's lymphoma, British Journal of Clinical Pharmacology, vol.104, issue.4, pp.597-605
DOI : 10.1111/j.1365-2125.2011.04125.x

K. Yu, M. Ricigliano, M. Hidalgo, G. Abou-alfa, M. Lowery et al., Pharmacogenomic Modeling of Circulating Tumor and Invasive Cells for Prediction of Chemotherapy Response and Resistance in Pancreatic Cancer, Clinical Cancer Research, vol.20, issue.20, pp.205281-205290, 2014.
DOI : 10.1158/1078-0432.CCR-14-0531

J. Hoskins, R. Goldberg, P. Qu, J. Ibrahim, and H. Mcleod, UGT1A1*28 Genotype and Irinotecan-Induced Neutropenia: Dose Matters, JNCI Journal of the National Cancer Institute, vol.99, issue.17, pp.1290-1295, 2007.
DOI : 10.1093/jnci/djm115

C. Serdjebi, J. Seitz, J. Ciccolini, M. Duluc, E. Norguet et al., Rapid deaminator status is associated with poor clinical outcome in pancreatic cancer patients treated with a gemcitabine-based regimen, Pharmacogenomics, vol.14, issue.9, pp.1047-51, 2013.
DOI : 10.2217/pgs.13.93