Portraying Collective Spatial Attention in Twitter

Abstract : Microblogging platforms such as Twitter have been recently frequently used for detecting real-time events. The spatial component, as reflected by user location, usually plays a key role in such systems. However, an often neglected source of spatial information are location mentions expressed in tweet contents. In this paper we demonstrate a novel visualization system for analyzing how Twitter users collectively talk about space and for uncovering correlations between geographical locations of Twitter users and the locations they tweet about. Our exploratory analysis is based on the development of a model of spatial information extraction and representation that allows building effective visual analytics framework for large scale datasets. We show visualization results based on half a year long dataset of Japanese tweets and a four months long collection of tweets from USA. The proposed system allows observing many space related aspects of tweet messages including the average scope of spatial attention of social media users and variances in spatial interest over time. The analytical framework we provide and the findings we outline can be valuable for scientists from diverse research areas and for any users interested in geographical and social aspects of shared online data.
Type de document :
Communication dans un congrès
SIGKDD ACM Special Interest Group on Knowledge Discovery in Data, Aug 2015, Sydney, Australia. pp.10, 2015, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 〈10.1145/2783258.2783418〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01195697
Contributeur : Émilien Antoine <>
Soumis le : samedi 12 septembre 2015 - 13:40:01
Dernière modification le : vendredi 19 janvier 2018 - 15:42:17
Document(s) archivé(s) le : lundi 28 décembre 2015 - 22:51:26

Fichier

mappingspatial.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Émilien Antoine, Adam Jatowt, Shoko Wakamiya, Yukiko Kawai, Toyokazu Akiyama. Portraying Collective Spatial Attention in Twitter. SIGKDD ACM Special Interest Group on Knowledge Discovery in Data, Aug 2015, Sydney, Australia. pp.10, 2015, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 〈10.1145/2783258.2783418〉. 〈hal-01195697〉

Partager

Métriques

Consultations de la notice

29

Téléchargements de fichiers

257