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Localisation of humans, objects and robots
Interacting on load-sensing oors

Mihai Andries, Olivier Simonin, Francois Charpillet

Abstract—Localisation, tracking and recognition of objects and analyzing the load they exert on the oor. As it does not
humans are basic tasks that are of high value in applications of extract gait features for recognition, it does not require ne
ambient intelligence. Sensing oors were introduced to address tracking of individual persons inside a group. In contrast to

these tasks in a non-intrusive way. To recognize the humans lusteri d HMM techni thi his b d
moving on the oor, they are usually rst localized, and then clustering an echniques, this new approach IS based on

a set of gait features are extracted (stride length, cadence, the multiple knapsack problerfb], a combinatorial approach
pressure pro le over a footstep). However, recognition generally which uses information about object weight and size. It can
fails when several people stand or walk together, preventing pe used to provide a probabilistic input for a multi-modal
successful tracking. This paper presents a detection, tracking gpiact recognition and tracking system. This technique was
and recognition technique which uses objects' weight. It con- . . . . . .

tinues working even when tracking individual persons becomes !mplemented In an.amb|ent intelligence Se“'”g’ where a non-
impossible. Inspired by computer vision, this technique processes intrusive load-sensing oor was used. The main drawback of
the oor pressure-image by segmenting the blobs containing this approach is its computational complexity, due to the sheer
objects, tracking them, and recognizing their contents through number of possibilities of correlating known objects to the

a mix of inference and combinatorial search. The result lists ohsapyations made. However, this issue is classically solved
the probabilities of assignments of known objects to observed = . . )
using dynamic programming.

blobs. The concept was successfully evaluated in daily life activity ; ) ]
scenarii, involving multi-object tracking and recognition on low For our research experiments, we have designed a sensing

resolution sensors, crossing of user trajectories, and weight oor prototype, which allows us to assess how this technology
ambiguity. This technique can be used to provide a probabilistic can be used for more advanced applications than those avail-
input for multi-modal object tracking and recognition systems. able today on the market. This also allowed us to overcome
Index Terms—Intelligent systems, Ubiquitous computing, Am- the drawback of the devices available off-the-shelf, which are
bient intelligence, Home automation, Force sensors, Sensor ar-not open and not designed for integrating new sofware. The
rays, Identi cation of persons oor has a modular design, being composed of load-sensing
tiles, whose concept was describedlih [6].
I. INTRODUCTION The rest of this paper is organised into 6 sections. Section

Ambient intelligence is a domain of research that explor8 presents the state of art in the domain of load-sensing
how sensing environments can interact with their inhabitants. @ors. SectionTll introduces the load-sensing equipment used
requires the reconstruction of a model of the environment tH&t €xperimentally evaluate our algorithm. In sectjor] IV, our
is used for reasoning. In this context of model reconstructiolpad-data processing approach is exposed, with an emphasis on
the localisation, tracking and recognition of objects and hum&Riect detection, tracking, and recognition. Then, experimental
beings in the supervised environment become important. Lod@sults for the proposed algorithm are presented and analysed
sensing oors were introduced to solve this problem in a noff? section\f. Finally, directions for future work are evoked in
intrusive mannei [L][2]3]. The traditional way of recognizingsectiorl\.
humans was by rst tracking them, extracting gait features
and then identify them using clustering techniques [4] or
Hidden Markov Models (HMM)I[1][[2]. However, this type of
recognition failed whenever the extraction of gait features be- . . .
came impossible. This happened when multiple users walkec The use of oor-sersors in arrbient intelligence cortexts

alongside, preventing the algorithm from correctly segmenti?€9ar in the late 1990's with project: like the ORL active

and tracking each of them on the oor. oor [1] by Addleses el al., the Magic caipe! [24] by Pa-

This paper presents an object recognition approach whi2dist €l al., anc the Smar oor [4] by Orr et al., where they
rcvidec informetion for reesoring abou the okserver space.

localizes and recognizes multiple objects simultaneously p i X )
Thest oors were latel integratec into smar ervirorments,

M. Andries and F. Charpillet are af liated to: aimec al deliveling assistance sevices like cortinuous diac-
Inria, Villers-les-Nancy, 54600, France ncsis of users health Thest smar ervirorment: alsc inte-
CNRS, LORIA, UMR 7503, Vandoeuvre-lés-Nancy, 54506, France cicti boti tnolcaies with ; ] K
Université de Lorraine, LORIA, UMR 7503, Vandoeuvre—lés—Nancygrate( a‘S'jt'\/e robotic tectnolcgies with sening neworks.

54506, France Exarrples include the Gatol Tect Smar Hous¢ made by the

0. Simonin is with the INSA Lyon CITI Lab., Inria Grenoble, UniverSitéUniVGISity of Floridz [25] the Aware Home intraducec by
de Lyon, 69621 Villeurbanne, France he G ia Insti T ’r | 561 [4 he Rob
M. Andries is supported by an Inria CORDIS grant within the Personal\t, € Geogia Institute of Tectnology [26] [4], anc the Robotc-

Assisted Living Inria Project Lab. Roorr systenr [27] [28] developec by the Univeisity of Tokyo.
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Table I: Methods for people identi cation using oor pressure

Scienti ¢ article Year Floor sensor Major features Classi er
Addlesee et all[1] 1997 strain gauge load cells Pressure pro le over a footstep Hidden Markov Model (HMM)
Orr et al. [4] 2000 strain gauge load cells Key points from pressure pro le K-nearest neighbors (KNN)
L electro-mechanical Im Pressure pro le over the entire oor during
Pirttikangas et all]2] 2003 (EMFi) walking HMM
Pirttikangas et al[]7] 2003 EMEi Pressure pro le over the entire oor during Learning Vector Quantization
walking (LVQ)
Yun et al. [8] 2003 pressure switch sensors t?v%n}gi?sstzfsd foot centers over 5 Consecul(/lulti-layer perceptron (MLP)
Jung et al.[[9] 2003 pressure mats 2D trajectories of center of pressure (COP) HMM
o . . Hidden Markov Model, Neural
Jung et al.[T10] 2004 pressure mats 2D positional trajectories of COP Network (HMM-NN)
. A . Features from spatial, frequency domainDistinction-sensitive Learning Vec-
Suutala and Roning [11] 2004 EMFi over a footstep tor Quantization (DSLVQ)
R : Features from spatial, frequency domain
Suutala and Roning [12] 2005 EMFi over a footsteps MLP, LVQ
. ; force-sensing resistor Stride length, stride cadence, heel-to-toe rag .
Middleton et al. [[13] 2005 (FSR) mats tio Not available (N/A)
Compensated foot centers and heel-strike
Yun et al. [14] 2005 photo interrupter sensors and toe-off time over 5 consecutive foot- MLP
steps
The left footprint pattern and the array of
Yun et al. [15] 2008 photo interrupter sensors sampled transitional footprints over differ- MLP
ent combinations of 2 or 4 footsteps
. , . Pressure and time features extracted fronMLP, Support Vector Machine
Suutala and Roéningd [16] 2008 EMFi, same las [2] pressure pro le over a footstep (SVM)
Single footstep: length, width, duration,
number of pixels in the binary map, (min,
Suutala et al.[[17] 2008 pressure switch sensors max, mean, std) from the gray-level dura-Gaussian Process
tion map; Between footsteps: stride, length,
stride cadence
; ; 2D trajectories of the Center of pressure, . ; s
Qian et al.[[18] 2008 FSR mats Pressure pro le over time Fisher linear discriminant (FLD)
Vera-Rodriguez et all_[19] 2009 piezoelectric force sensors  Geometric and holistic footstep data SVM
Qian et al.|[20] 2010 FSR mats Mean pressure, stride length FLD
Vera-Rodriguez et all_[21] 2010 piezoelectric sensor mat Holistic pressure-time info SVM
. . Foot centers, heel-to-toe time, footprint ge-
) ’ ’
Yun et al. [22] 2011 photo interrupter sensors ometric data MLP
Vera-Rodriguez et all_[23] 2013 piezoelectric sensor mat Fusion of time and holistic pressure info SVM
Proposed method 2015 strain gauge load cells Weight over time Knapsack algorithm

Table [] lists the oor sensing technologies capable gerformance according to previous studies. Rajalingkaal.
identifying people, updating the lists previously presentdB8] used in- oor force-sensing to track the 3d body posture
in [20] and [23]. The current main types of oor pressuref pedestrians using Bayesian lters.
sensing technologies are: capacitive sensors, piezoelectric semll the presented oors that are capable of human recogni-
sors, piezoresistive sensors, strain gauge load cells, and phiuto extract a set of features for their tracking and identi cation
interrupter sensors. task. Addleseet al. [1] recognise humans using their pressure

Being installed inside or under the oor, the load sensorso le over a footstep as data, and using Hidden Markov
perceive only a projection of the forces involved in humaklodels as classiers. They also mention the problem of
daily activities. This leaves space for ambiguities in trackinigterpretation of spread loads, when objects span several tiles
and recognition. Thus, whenever oor sensors seemed to t.e a modular oor. Orret al. [4] use the vertical ground
insuf cient for any of the three tasks (localisation, trackingeaction force pro le, as well as its derivates. These include the
and identi cation), additional sensors were used in a multmaximal load value during heel strike and during toe push-off,
modal perspective to solve emerging data ambiguities. Sensargl the minimal load value recorded during the weight transfer
oors have been combined with radio-frequency identi catiofrom heel to toe.

(RFID) systems([29], pyroelectric infrared sensars [30], wear- Pirttikangaset al. [2] recognise individual persons walking
able accelerometers [31] [32], audio capture systéms [33] amal the oor using the pressure pattern of their gait and
multiple cameras [34]. HMMs. Similarly, Middletonet al. [13] use the stride length,

Load-sensing surfaces are also employed in biomechanistide cadence, and time-on-toe to time-on-heel ratio and then
and medical laboratories. Examples include the GAITRite gai#cognise the subjects using a standard distance metric of
analysis system[[35], which is an electronic walkway, ansimilarity.
the Kistler force plates [36], which are used for sports and Qian et al. presented an approach to identify people based
performance diagnostics, as well as for gait and balance arai-features extracted from their géit [18]. They used a large
ysis. Helleret al. used a force-measuring oor to investigatearea (180 square feet), high resolution (1 sensor pé},amat-
dynamic balance in humans_[37], which is correlated to sparorked pressure sensing oor which employed force-sensing
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resistors|[30]. sensing oor, which employs piezoelectric sensors mounted

Schmidt et al. [3] queried a database of known object®n a printed circuit board, and placed under a conventional
whenever a change was detected in the total weight of a scamat [21]. The authors extracted the ground reaction force of
to see if there exists an entry that has the same weight as fibgtsteps([2/l] and their footprints [19], and performed human
absolute difference in weight detected. However, this procagzognition using a Support Vector Machine. Recognition was
was neither probabilistic, nor could it detect simultaneoyserformed using a database of 120 known people, the largest
introductions or removals of objects from the scene. database to that date.

Morishita et al. in [40] presented a high-resolution oor Leeet al.[47] presented a network of force-sensing resistors
sensor composed of pressure switches, which provided bingmgt can track users and allow them to interact with the
information about the presence or absence of load on them.dtsart environment by tapping the oor, onto which a visual
high resolution allowed to obtain sharp images of the surfaceserface is projected. Similarly, Visedlt al. [48] used a tiled
in contact with the oor, such as footprints or shoe soles. It wdsad-sensing oor as a human-computer interface, where an
suggested that an image processing software could regorimage of the interface is overlayed on the oor, on which
footprints. users can press virtual buttons with their feet. The Active

Murakita et al. [41] performed multi-user human trackingGaming company proposed the pressure sensitive Lightspace
on the VS-SS-F InfoFloor system using the Markov ChaiRloor [49], which is an interactive gaming platform combining
Monte Carlo method. However, the employed oor sensoggessure sensors with LEDs for visual feedback.
gave only a binary information about the occupation of its More recently, sensing oors products like the Sens-
constituent tiles. Tracking would fail whenever two or moré&loor [50] (a oor network of capacitive proximity sensors),
targets crossed their paths, generating tracking ambigui@ap oor [44] (a network of capacitive sensors), and Floor-
Attempts were made to solve this problem by fusing theMotion [51] started being commercialised by companies,
information from the oor sensors with that from on-bodymainly for the senior care industry. An innovative energy
acceleration sensors [32]. harvesting sensing oor has also been proposed_in [52].

Savio et al. [42] identied footsteps on asmart carpet
with integrated binary capacitive sensors, using clusteringConcerning object tracking on sensing oors, inspiration can
algorithms based on Maximum Likelihood Estimation anf€ sought in the eld of computer vision, where techniques
Rank Regression analysis. This allowed the extraction of useséch as Bayesian Filtering_[53], Joint Particle Filteringl [54],
trajectory. Probabilistic Multi-Hypothesis Tracking [55], and Joint Prob-

Valtonen et al([4B] presented a 2D human positioning ar@Pilistic Data Association Filtering [56] have been applied for
tracking system, which used a low-frequency electric eld t&racking multiple targets. Challet al. provided an overview
locate humans on the oor. The system could only deteéf these techniques iRundamentals of object trackini7].
conductive objects, and did not provide information about tHguutalaet al. [58] used Gaussian Process Joint Particle Fil-
weight of objects. tering to track humans on a tiled oor equipped with binary

Similarly, capacitive sensing oor mats capable of detectingwitch sensors. However, their algorithm did not use weight
and tracking objects in the environment were used by Braiiiformation to improve object tracking, as this information
et al. [44). However, as this oor did not measure load forcegyas not provided by their hardware. In the case of pressure-
it could not recognize objects on its surface by their pressugensing oors, we can also exploit the weight information to
pro le. evaluate the generated tracking hypotheses.

Lombardiet al. [45] developed a tiled sensing oor, with . ]
tiles containing sensing stripes, and which was capable ofin this paper we present an algorithm that detects, tracks

tracking a walking human. They used a Randomized tree cl&8d recognizes objects by using only the information about
si er to identify footsteps from the pressure signal. Howevef€ir size and weight. It offers a solution to the problem
the oor did not implement any human recognition abilities?f interpretation of spread loads, when objects span several

It is worth mentioning that they treated the oor pressure daf4€s 0n @ modular oor. In comparison to the aforementioned
as if it were an image. tracking techniques, which exploit only binary data about the

Shen and Shir[26] developed a oor that uses an opticBfésence or ab.sence of objepts, our tracking glgorithm also
ber sensor. It employs Brillouin Optical Correlation Domain€XPloits the weight data provided by load-sensing oors, as
Analysis (BOCDA) to calculate the location and the stress diftailed in Sectiof TV-B. As it tracks and recognizes objects
the sensor. The oor was able to track two persons simultarf@dividually or in groups, it is more fault tolerant as opposed

ously. However, no identi cation abilities were developed of® @lgorithms that extract gait features, which require ne
reported. segmentation and tracking of targets. This technique can boost

Yun et al. worked on several sensing oor prototypés [Srecognition when used complementgrily with algorithms that
[14] [15]. Their latest prototype, the UbiFloorl[ [22], uses agXtract features from the hL_Jr_nan gait, but can also serve as a
array of tiles equipped with photo interrupter sensors. It usg&cefully degraded recognition mode whenever these fail.
multilayer perceptron networks to identify individuals based Ill. "L OAD SENSING EQUIPMENT
on the extracted features (stride length, foot angle, heel strikeNe have implemented our object recognition algorithm
time, etc.). on the SmartTiles platform[6], which is installed in our

Vera-Rodriguezt al. described a high-resolution pressureambient intelligence prototype apartment (see Fig. 4). This
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load-sensing oor is composed of square tiles, each equippedrlhis prototype was originally designed as a medium of
with 4 pressure sensors (strain gauge load cells), two ARikteraction for robots with distributed control, in an ant-like
processors (Cortex m3 and a8), and a wired connection to fashion. The computing unit available on each tile can register
four neighbouring cells (see Fig. 1). The processing units weaerirtual pheromone trace, that can then be transmitted to other
manufactured by Hikcﬁ) The tiles' architecture is presentedrobots, using either wired or wireless communication.

in Fig. [4. As shown in the diagram, both centralized and In a different perspective, the sensing- oor acts as a sensor
decentralized applications can be supported, thanks to fbe an ambient intelligence. It can measure pressure forces
computing units embedded in the tiles. The tiles form with the load sensors installed under the tiles, measuring static

network of load-sensors, as represented in [Hig. 5.

(a) Underside of a load-sensin¢p) The SparkFun SEN-10245

tile. The load sensors are in thtbad sensor used. Source:

corners of the tile. www.sparkfun.com/products/
10245

Figure 1: An image of a tile and a load-sensor.

weights with a precision of up to 2 kg. The oor can also
detect disturbances in the surrounding magnetic eld caused
by the presence of robots, using magnetometers embedded on
the processing units of the tiles.

Each tile also has an embedded accelerometer, that allows
it to detect shocks that can be caused by objects or humans
falling on the ground. Floor devices of similar functionality,
such as the SensFlodr_|50] that can detect people lying on
the ground are already employed in nursing homes in France.
Each tile has 16 light-emitting diodes which provide visual
feedback.

The oor can localize the exerted punctual pressures, with
an accuracy beyond the size of a tile. Punctual pressures can
be located through a calculation of the center of pressures
measured by the load sensors. The precision is in uenced by
the signal to noise ratio, as visible in F[g. 3.

Several functionalities have already been implemented on
this prototype oor, including weight measurement, fall de-
tection, and footstep tracking. The oor's ability to perform
high resolution pressure sensing by shifting the objects on the
sensing tiles has been demonstrated_in [59].

This type of tiled sensing oor also has its inconvenients:

it is incapable of distinguishing between objects of equal
weight;

its resolution depends on the size of the tiles, which are
usually quite large (30 cm x 30 cm or bigger);

its sensitivity depends on the sensitivity of its sensors;
perception of forces is limited to the oor plane;

This oor is also capable of detecting and measuring foot-
steps with high accuracy, extracting them using the variations
in the translation speed of the center of pressure, as described
in [60]. We also implemented heuristic real-time multi-user
localisation (without user identi cation) in an indoor setting
using this prototype oor. This paper focuses on the object
detection, tracking and recognition capability of such a load-
sensing tiled oor.

IV. METHODOLOGY. LOAD DATA PROCESSING FLOW

Parallels can be drawn between data processing in the
context of computer vision and that of load-sensing oors. The
eld of view of a camera is analagous to the surface covered
by a sensing oor. The light-intensity bitmap image generated
by a camera is analagous to the load image generated by a
load-sensing oor. This hints that traditional image processing

Figure 2: Tile architecture. LOW-.|EVE| rmware .iS the ViOlettechniques can bhe emp|0yed to solve similar pr0b|ems in the
block, blue blocks form the middleware, while high-levetontext of load-sensing oors.

software blocks are in yellow.

Ihttp://www.hikob.com/

The traditional data processing ow in computer vision usu-
ally consists of the following steps: background subtraction,
blob detection, blob tracking, and blob recognition. The data
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ow processing that we propose for load-sensing oors isomponents present in this graph. Fighfe 6 shows the set of
similar, and has the following structure: background subtralmad sensors embedded into the oor, where each sensor is
tion, blob detection usingonnected-component labelinand represented as a dot. The blobs detected by the oor were
a feedback loop perfoming blob tracking and localisation d@fien overlayed onto this image.

objects (see Fig.]6). The algorithm receives as input:

the force values registered by the sensors composing %‘.eObject tracking

oor when there is nothing on it (i.e. the zero values used ter the d . ¢ blob h
for background subtraction); After the detection of blobs on the oor, we can try to

the values of forces recorded at tietogether with the infer the objects located in these blobs by using their weight.
coordinates of the load sensors that sensed them: However, the load force detected by the sensors oscillates
a list containing the models of objects known to the Oor(_juring activities such as walking or squatting and standing

The object models have the following structure: objecl{p (see Flg_[]7 for an exampl_e). Thus, the vglue of this forc‘e
o : €annot be directly converted into an estimation of an object's
name, mass (in kilograms), and length (in meters).

mass. Nevertheless, the value of this force oscillates around the
weight of the object or person, as mentioned_in [1]. Therefore,
A. Object detection it is possible to approximate the total weight of objects inside
Objects are detected on the oor by background suleblob, by calculating the blob's average weight over a sliding
traction and subsequerbnnected-component labelinghe window of time. This requires blob tracking.
background subtraction allows to process the data from senAn adequate solution to this problem is to use a tracking
sors that perceived force values above zero, ltering out dkchnique that takes into consideration the different ways in
other sensors. Therpnnected-component labelif@l] links which blobs can evolve. A blob can appear in the scene,
together all sensors that are potentially supporting the sanfieappear, remain constant, merge with other blobs, split into
object, thereby forming blobs. It uses the length of the largestveral blobs, or it can exchange contents with another blob.
known object as a proximity threshold: if two sensors detectdde propose a method that explores the entire search space
pressures over the noise threshold, and if the distance betwegjoint blob evolution hypotheses (except for remote content
the sensors is smaller than the size of the biggest known objentchange between blobs, rarely encountered in practice), and
these are linked together, forming a connected componentsorts these hypotheses according to a given criterion. Intu-
The size of the largest known object is calculated frontively, the optimal solution should minimize the total distance
the list of known object models. After this phase, any objettavelled by the blobs inside the scene between two instants of
present on the oor is guaranteed to be contained by one blbime, as well as minimize the weight difference between the
at most. On the other hand, a blob may contain one or sevetatrelated blobs in two neighboring time frames. We de ne
objects. penalties for each type of blob evolution, which are used for
For simplicity reasons, we will consider that there is no oganking the tracking hypotheses (see T4bje II).
clusion in our system, which occurs when a tile malfunctions An appearevolution penalizes the weight of the appeared
and stops sending load data. blob, as well as the distance between the new blob and
In our implementation, the set of sensors is representedths entry/exit location of the environment. Symmetrically, a
a graph (see Fil] 6). Blobs are formed by the sensors left aftésappearevolution penalizes the weight of the disappeared
background subtraction, which are linked usiognnected- blob, and the distance to the exit point. gplit evolution
component labelingThe blobs correspond to the connectefdenalizes the difference between the weight of the parent blob

Figure 3: The scattering of the calculated center of pressure, caused by the sensor noise. The thick black square represent

the load-sensing tile. Scattering is shown for 3 different loads (7kg, 12kg and 20kg) at 16 different locations of the exerted

punctual pressure, marked by black circles. The higher is the ratio of signal to noise, the less scattering is observed. The

indicated load does not include the weight of the tile itself, which is 10.7 kg.
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and the total weight of the child blobs. Aergeevolution mismatch in weight between the blobs and the objects assigned
penalizes the differences between the total weight of the parémtthem (see Fig[]9). For each hypothetical assignment of
blobs, and the weight of the (uni ed) child blob. In terms obbjects to blobs, these mismatches are squared and then
distance, botlsplit and mergepenalize the euclidean distancesummed, so as to give preference to small mismatches, rather
between parent and child blobs. However, this distance pendhgn large ones. The weight mismatch (or the penalty) of an
is considered nil for the parent and child blobs that overlassignment of objects to blobs is given by:

and occupy the same surface tiles (e.g. all the split child blobgty( blobs

that are contained within the surface of the parent blob; all the weight blobg  weight contentgblobyg ) ? (1)
merged parent blobs that are contained within the surface of;y_;
the uni ed child blob). The size of the search space, that is the number of possible

The nal score of a hypothesis is obtained by rst diVidingassignments to analyse, is given by:
the distance penalty and the weight penalty by their corre-
sponding average noise values, squaring the results, and then (number of blobs + Fjumber of known objects) )
summing them up to obtain the mixed nal score. The joint

blob evolution hypothesis with the lowest penalty is consideredAs highlighted by eq[ ]2, there is a risk of a combinatorial
to be the most probable one. explosion when performing this exhaustive search. This can be

dealt with using traditional techniques likeanch and bound
. . and dynamic progammin
C. Object recognition Giv)v/an the Eon%ents ofgblobs in the previous timestep, and

Object recognition on load sensing surfaces can be pgiven a hypothesis on how the blobs have evolved inside the
formed by using the weight of objects, or by using theiscene from the previous to the current timestep, we can infer
surface of contact with the oo [$9]. Recognition by weight ighe contents of blobs at the current timestep. However, this
trivial when tracking single objects or when performed on higkequires bootstrapping the knowledge about the contents of
resolution pressure sensors, that can easily segment objectp|gBs at some initial timésart -
the oor. However, the problem is less trivial when tracking As the blobs inside the scene evolve, the candidate recogni-
multiple entities, each with multiple points of support, angon solutions will cumulate penalties over time. The candidate
which interact on noisy, low-resolution sensors. solution with the minimal total penalty over time is considered

Background subtraction, connected-component labeling, be the best guess (see Hig] 10).
and blob tracking, described in the previous sections JV-A The result of the recognition algorithm is a list of as-
and[TV-B, reduce the problem to recognizing the contents gignments of objects to blobs, ordered according to their
blobs of known weight, which support the weight of one ofumulated penalties. Intuitively, the assignment having the
more objects in their entirety. This allows us to model thginimal penalty is considered to be the most probable one.
recognition task as an instance of a Multiple Knapsack Prob-For probabilistic reasoning algorithms, a measure describing
lem, interpreting the weights of detected blobs as knapsacksé probability for an assignment of not being the correct solu-
volumes, that have to be optimally lled with known objects'tion can be introduced: this is the penalty of the assignment,
weights. This is based on the hypothesis that the averag&rmalized using the sum of all assignments' penalties (see
weight of a blob is optimally matched by the weights of theq.[3).
objects it contains (see Fig] 8).

This can be formalised as follows: ] . _ PenaltfAssignment)

O is the set of known objects; P(: Assignmenty) = o Rignments 3)

P (O) is the set of all combinations of known objects (it Penalty Assignmen )

is the power set 0D); id =1
C = fbloh;:::;blok g is the set of all blobs observed V. EXPERIMENTS

at a given time.. Each blob is de ned by its location and we evaluate our approach by running experiments with
weight. humans performing daily life activities: doing the morning

All the possible assignments of objects to blobs are corsutine (waking up in the bed, using the toilet, having break-
sidered and ranked in ascending order, by using the tofast), and receiving a visitor (opening the door, leading the

Appear / Disappear Merge Split
non-overlapping non-overlapping
. i —exi 2 nts cHiiren
Distance penalty distanceTo (entrance=exit ) pge distanceTo  (childBlob ) 2 ™ distanceTo (parentBlob ) 2
avg COP scattering noise average COP scattering noise average COP scattering noise
2 3
ppRents 2 cifiren 32

weight (blob)  weight (childBlob ) weight (parentBlob ) weight (blob)

; weight (blob) 2 g Z

Weight penalty avg pressure noise average pressure noise average pressure noise

Table II: Calculation of penalties for each type of blob evolution
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Figure 7: The load pro le of a person squatting and jumping on
a load-sensing tile. Notice that the load oscillation is centered
around the mass of the person, which is 60 kg.

Figure 4. 3D model of the intelligent apartment prototype,
with the load-sensing oor.

Figure 8: Object recognition modeled as a Multiple Knapsack

Problem.
Assignment Assignment AsSigNMentops + 1)obiects
Object ! ; Object ! Blob, Object ! Bloby
Objech ! ; -« | Object !'; -« | Object ! Bloby
Object, !; Object, !  Bloby Object, ! Bloby

Figure 5: 2D image of the tiles composing the oor, with thesjy ;e o All the possible assignments of known objects to

sensors highlighted in red. Gray tiles are not equipped Wiffjyhs are evaluated and ordered according to how well the

Sensors. blobs are matched in terms of weight by their contents. The
assignment having the minimal weight mismatch is considered
as most probable.

Figure 6: Object recognition sample. The oor load sensors

are represented as little black dots. The detected blobs are

colored in green. The numbers in black show the average blob

weight, calculated over a time window. The red dots show the

position of blobs' centers of mass. The text in red shows the

recognition guess. Figure 10: The optimal assignment of objects to blobs cumu-
lates the minimal penalty over time.
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saccadic movements of the COP which are characteristic for
the human gait. As we had no ground truth for the localisation
of robot's center of pressure, we used an approximation using
the data from the motion tracking system. Considering that
the robot is rigid, we could estimate the position of its COP
using the least squares method, by calculating the point which
minimized the quadratic distance error between itself and the
center of pressure calculated by the sensing oor.

The robot was localised by the sensing oor with an average
precision of 8 cm for free movement, and a standard deviation
of 5 cm, as shown in Fig. 12.

(a) The bedroom and living room.

B. Morning routine scenario

Themorning routinescenario involved a person performing
a set of daily life activities, such as: sleeping in bed, using
the toilet, having breakfast, and leaving the house (see Fig.
[I3). The challenges of this scenario included tracking multiple
interacting entities on a low resolution sensor, as well as the
presence of ambiguity between objects of similar weight.
As we had no system to provide us with the ground truth for
(b) The living room, the bathroom and the kitchen. the localisation of a person's COP, the measured localisation
Lrror obtained using the COP approximation given by the
rﬂotion tracking system is expected to be higher than the
real localisation error. In contrast to rigid robots, humans are
exible. This did not allow us to calculate an approximation
d?f the COP using the least squares method, as we had done

Figure 11: The prototype apartment with the tiled sensi
oor.

visitor into the living room, having a chat while seate . . .

eating a cake, leading the visitor to the exit). All scenarlll the baseline case with a rigid robot.

involve multi-object detection, tracking and localisation. The The localisation errors for the human (average error :!'3

experiments took place in our prototype apartment (Fig. 11§™) and the bed (average error 19 cm) are shown in Fig.
During the whole duration of these activities, the sensi - When the person interacts with t_he bed, the two are

oor had to localize the persons and objects inside the Sceﬁg_gment_ed together in a smgle_blob_, with the CO_P (?Ioser o

The center of pressure (COP) of a blob was consider heavier human, which explains his better localisation. The

as the location of all the objects contained by this blog)qcalis,ation error is the biggest aF .the beginning and_ end of
An approximation of the ground truth was provided by gach interaction, when the two entities begin approachlng'each

QualisysE] motion tracking system (tracking error below 1 | ' during the cl ) . b bi h
mm), which recorded the vertical projection of markers pIacé@ owest during the close interactions between objects, when

on objects' approximate centers of mass. Each human hagqﬁ blob regrouping th? iqteracting objects is compa_ct: we
re ector placed on his waist, so that its vertical projectiof?bserve 15 cm of Iocallsan_on error for the be(.j when it is at
onto the ground plane would approximately correspond fgst. and a higher error during interactions, which depends on
his COP (g.[I3a and T4a). The experimental results afe proximity with the interacting entity and its relative weight.
presented as measurements of the localisation precision. Theddd: [13¢ shows the localisation errors for lightweight ob-
measurements were made only when both localisation difgts: such as the chair (5.5 kg) and the dish with the breakfast
were available: the approximate ground truth given by tHg-9 K0). A heavy plate was chosen to overcome the noise
motion tracking system, and the localisation provided by tBreshold of the oor sensor. We observe the same effects as

oor. This explains the interruptions in the curves showing th@reviously described: the localisation error increases in the
localisation precision proximity of humans, due to their segmentation in a common

blob, with the COP closer to the human.

A. Baseline precision o o )
) ) ) . C. Receiving a visitor scenario
To gain an understanding of the baseline precision of

the oor sensor, we performed an experiment with a non- The receiving a visitorscenario involved a person hosting
holonomic 4—Wr,1eeled robot (robuLAB-10 by RoboEbft someone in his house. The guest would be greeted at the door
rolling on the oor of the apartment. The idea was to track thBY the host, enter the living room of the apartment, take a seat,

uid movement of an autonomous robot, as compared to ti{¢it for the host to bring something to eat, have a chat with
the host, and then leave the house. The challenge was to track

2http:/Awww.qualisys.com/ and locate multiple interacting persons with a low resultion
Shttp://www.robosoft.com/ sensor.
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(a) A robuLAB-10 robot navigating on the  (b) The robot trajectory (red), and the(c) Tukey box plot presenting an analysis
sensing oor. localisation given by the oor (blue). The of the oor's localisation error, depending
average localisation error is 8 cm, with aon the number of tiles supporting the robot
standard deviation of 5 cm. at the time of localisation.

Figure 12: Therobotic navigationscenario

The localisation results are shown in Hig. l4b. The averagdditional property of having entire objects segmented into
localisation error for interacting persons is around 20 cm. Thdobs. This allows the interpretation of spread loads, when
drop in the localisation precision occurs when the two persoaobjects span several tiles on a modular oor. The proposed
walk or stand nearby, occupying a contiguous space in tertnacking algorithm considers the different ways in which blobs
of tiles, which prevents them from being segmented separatalsin interact, identifying the most probable hypotheses for
Again, the measured localisation error for humans is expectib@ way the blobs have evolved between two timesteps. This
to be higher than the real localisation error, as we could nallows to infer the objects contained in the segmented blobs,
approximate the position of the human's COP with the leagiven their contents at the previous timestep, and given a
squares method, as we did it with a rigid robot in sedtion|V-Aypothesis on the evolution of blobs. The resulting possible

assignments of objects to blobs are ranked by the mismatch
D. Discussion between the weight of blobs and of objects assigned to them.
This is reminiscent of thenultiple knapsack problenmwith

The presented algorithm works independently of the OQtr)lobs acting as containers that have to be optimally lled

resolution (i.e. density of sensors pef nsize of the oor . ; ) e ) : .
tiles). However, the bigger the tiles are (the lesser the OOV\-”th known objects, identifying the optimal solution using

image resolution is), the coarser the results of the objec(faSt SquaresThe whole localisation algorithm was evaluated

. : . . - in experiments with humans performing daily life activities:
detection algorithm will be. Also, coarser object detection . . . - -
. ST . " executing the morning routine, and receiving a visitor. Chal-
results introduce more ambiguity in object recognition a . : : .
enges included the segmentation, tracking and recognition

localisation. Therefore, it would be interesting to have T : o ) .
. . . .. of multiple interacting entities using a low resolution sensor,
prototype with a higher sensor density (smaller tiles in our : ) : L ;
) as well as disambiguation between combinations of objects
case), as well as less noisy sensors. . . o
) ; ) . .of similar weight. The average error for human localisation
The use of these tiles dictates their smallest practical size

for footstep tracking applications, tiles having the size of yas approximately 20 cm. The result of this algorithm can

. ; ) .~ he modelled as a probability distribution over all possible
foot are suf cient. For more ne-grained details, as required ~ . .
. . L ; assignments of objects to the blobs detected on the oor.
by biometrical applications, other types of sensing oors may, . : ; ) : :
o . his allows for easy integration of this algorithm into a
be more adequate (e.g. pressure mats), if judged by price per

. . . S - Mmulti-modal object recognition architecture. This technique
unit of sensing surface, or by their fabrication complexity. " : .
. . an boost recognition when used complementarily with algo-
It would also be interesting to have sensors that capture t

) rit%ms that extract features from gait, but can also serve as a
xyz components of the ground force. This would allow the o .
cefully degraded recognition mode whenever these fail.

reconstruction of the human body posture, given a model g

the human body and of its constraints. Future work will include ne-grained tracking, obtained by

assigning each detected object to a separate layer. This should
VI. CONCLUSION AND PERSPECTIVES allow to continuously update the set of objects composing the
This paper presents a technique for detecting, trackibgckground, and would consequently improve segmentation.
and recognising objects on load-sensing oors, using objecile are also working on labeling the interactions between
weight as discriminative feature. The proposed object sdgdimans and objects, which can be roughly observed using
mentation algorithm is a variation afonnected-componentthis technique. We also plan to use this data to generate logs
labeling inspired by the computer vision community, with theletailing the activities performed by a person during the day:
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(a) An image from theéMorning routinescenario. (a) An image from the scenari@eceiving a visitar

(b) Localisation error for th&lorning routinescenario. During (b) Localisation error for the scenario with a person hosting
each interaction between the person and the bed, the center a visitor in his house. The drop in the localisation precision
of pressure is located between the interacting entities, closer  occurs when the two persons walk or stand nearby, occupying
to the heaviest one (the human, in this case). The spikes a contiguous space in terms of tiles, which prevents them from
between 10-30s, and between 62-68s are caused by the human being segmented separately. Average human localisation error:
approaching and leaving the bed during the interactions. 20 cm.

Figure 14: TheVisitor scenario

how many times a person got out of bed, how many steps did

he make, how many persons are there in the room, etc. These
activity plots are useful in hospitals and retirement homes, as

they allow to trace the overall health state of a patient.
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