Hermite type Spline spaces over rectangular meshes with complex topological structures

Abstract : Motivated by the magneto hydrodynamic (MHD) simulation for Tokamaks with Isogeometric analysis, we present a new type of splines defined over a rectangular mesh with arbitrary topology, which are piecewise polynomial functions of bidegree (d,d) and C^r parameter continuity. In particular, We compute their dimension and exhibit basis functions called Hermite bases for bicubic spline spaces. We investigate their potential applications for solving partial differential equations (PDEs) over a complex physical domain in the framework of Isogeometric analysis. In particular, we analyze the property of approximation of these spline spaces for the L2-norm. Despite the fact that the basis functions are singular at extraordinary vertices, we show that the optimal approximation order and numerical convergence rates are reached by setting a proper parameterization.
Type de document :
Article dans une revue
Communications in Computational Physics, Global Science Press, 2017, 21 (3), pp.835-866. 〈10.4208/cicp.OA-2016-0030〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01196428
Contributeur : Meng Wu <>
Soumis le : mardi 25 avril 2017 - 15:00:43
Dernière modification le : samedi 23 septembre 2017 - 01:05:08
Document(s) archivé(s) le : mercredi 26 juillet 2017 - 14:16:08

Fichier

2-paper-16-05-04.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Meng Wu, Bernard Mourrain, André Galligo, Boniface Nkonga. Hermite type Spline spaces over rectangular meshes with complex topological structures. Communications in Computational Physics, Global Science Press, 2017, 21 (3), pp.835-866. 〈10.4208/cicp.OA-2016-0030〉. 〈hal-01196428v4〉

Partager

Métriques

Consultations de
la notice

122

Téléchargements du document

24