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Abstract

Isogeometric analysis is a method for solving geometric partial differential equations
(PDEs). Generating parametrizations of a PDE’s physical domain is a basic and impor-
tant issue within isogeometric analysis framework. In this paper, we present a global
H1-parametrization method for a complex planar physical domain.

Keywords: H1-parametrization, complex planar physical domains, isogeometric
analysis

1. Introduction

Isogeometric analysis method was proposed by Hughes et al. [1] to bridge the gap
between the geometric description of a physical domain and numerical analysis. Within
isogeometric analysis framework, the same basis functions are used to describe physical
domains and solutions obtained by numerical analysis.

A map to describe a physical domain is called a parametrization of the physical
domain. A parametrization has an impact on the simulation results, efficiency of the
computation, and stability of numerical system [2, 3, 4]. So far, there is no simple
criterion to measure the quality of a parametrization. In the following, we list three
basic requirements in recent works on this topic.

First, parametrizations are injective. For describing the geometry of physical do-
mains, parametrizations should have no self-intersection, such as in [5, 6, 7].

Second, a uniform parametrization is expected to obtain an efficient and stable
solution process. For numerical analysis, the condition number of the linear system
obtained within isogeometric analysis framework should be as small as possible [8, 9].
Smaller condition numbers bring efficiency and numerical stability. In applications, a

∗Corresponding author at: School of Mathematics, Hefei University of Technology, No. 193, Tunxi
Road, Hefei, Anhui Prov., 230009, P. R. China.

Email addresses: meng.wu@hfut.edu.cn, wumeng@mail.ustc.edu.cn (Meng Wu),
Bernard.Mourrain@inria.fr (Bernard Mourrain), andre.galligo@unice.fr (André Galligo),
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linear system is always large. It is better to use iterative solvers to reduce the com-
putational costs. A smaller condition number means a rapid convergence and a more
accurate linear system solution. However, this condition number depends on the un-
derlying parametrization. To obtain a smaller condition number, [8] suggests that the
size of elements on the physical domain should not vary too much, the parameters
lines should be as orthogonal as possible, and the parameter directions should have
approximately the same length. Moreover, in the classical FEM, there are many re-
sults regarding the stiffness matrix and bounds of its condition number. Normally, a
condition number is affected by the size [10, 11] and geometry [12, 13] of elements on
a given physical domain and employed basis functions [14, 15, 16]. From the results of
the condition number bounds in isogeometric analysis and the classical FEM, a uniform
parametrization is expected when the employed basis functions are given.

Third, parametrizations should satisfy some additional conditions that guarantee
the regularity properties of the test functions on a physical domain if there are singu-
larities, see [17, 18]. The test functions used in Galerkin-based isogeometric analysis
are obtained by composing the inverse of a parametrization with basis functions. Thus,
singularities of a parametrization impact the regularity property of the test functions,
i.e., the regularity property of test functions should be considered if singularities can-
not be avoided. For example, in this paper, a resulting parametrization satisfies the
H1 integrability assumption outlined in [17], i.e., test functions are H1 at least on a
planar physical domain. Thus, it is called a H1-parametrization. According to H1-
parametrizations, isogeometric technique can be used to solve second order PDEs over
a planar physical domain.

Based on these three basic requirements, a reparametrization algorithm is presented
in this paper to obtain a global uniform injective H1-parametrization of a complex pla-
nar physical domain. Usually Non-Uniform Rational B-Splines (NURBS) are treated
as basis functions of classical isogeometric analysis, i.e., NURBS-based isogeometric
analysis. When we consider a complex planar physical domain (especially with a com-
plex topology), patching multiple NURBS parametrizations or trimming techniques,
such as in[19], need to be considered. To obtain a global representation of a physical
domain with complex (geometric or topological) features, bicubic splines with rigid
transformations, as in [20], are used to represent the global parametrizations.

This algorithm can be applied to several situations. For example, to simulate
the two-dimensionality of the flow over the RAE2822 airfoil, the physical domain is
a bounded domain around it. The initial parametrization (Figure 1(b)) is produced
by fitting the sample points shown in Figure 1(a) of its boundary. Thus, during the
reparametrization process, fixed boundaries are expected. Applying the reparametriza-
tion algorithm in this paper, the H1-parametrization is shown in Figure 1(c).

This paper is structured as follows. In Section 2, global parametrizations are in-
troduced and some properties of parametrizations are presented as background. Then,
in Section 3, we develop the reparametrization algorithm. Using this algorithm, in
Section 4, several experiments are presented to reparametrize physical domains. These
physical domains include a square domain, complex geometric features (such as sharp
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Sample points of the boundary of a wing of aircraft

(a) The sample points from the RAE2822 airfoil

(b) The initial parametrization by fitting
the sample points

(c) The H1-parametrization

Figure 1: parametrizations of the physical domain around RAE2822 airfoil

corners and non-convex shapes) and complex topological features (such as many holes
inside). In Section 5, we conclude this paper by indicating directions for future work.
Lastly, the proofs of lemmas are collected in Section 6 as an appendix.

2. Parametrizations with splines defined over meshes with complex topolo-
gies

In this paper, C1 splines defined over a mesh with a complex topology are used to
represent parametrizations, where C1 means the parametrical smoothness order is 1.
There are similar works in geometric modelling, such as [21]. In [21], the author defines
a spline space that meets the parametrical smoothness conditions. This spline space
consists of spline surfaces for applications in geometric modelling. Although there are
singularities at extraordinary vertices, the regularity of spline surfaces on a physical
domain can be obtained by restricting the higher order derivatives at extraordinary
vertices, i.e., certain neighboring Bézier points are coplanar. Similar to the approach
taken by [21], C1 splines are singular at extraodinary vertices. For applications in
isogeometric analysis, they are scalar functions used as shape functions, trial functions,
test functions by parametrizations. The regularity of test/trial functions on a physical
domain is obtained by designing a proper parametrization that satisfies an integrability
assumption around the extraordinary vertex, such as an H1-integrability assumption in
this paper. Restriction of the discussion to planar domains leads to a smaller number
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of constraints with respect to [21], where non-planar domains were considered, and as
a result C1 splines have more degrees of freedoms available to approximate numerical
solutions. In this section, we give an intuitive explanation of C1 splines. One can refer
to [20] for the precise mathematical definitions. Based on this intuitive explanation,
the parametrization represented by these splines is decomposed into two parts. The
different modification algorithms for these two parts are presented in Section 3 later.

2.1. An intuitive introduction to splines

Before introducing the splines, parametric meshes are presented, where the splines
are defined over this type of mesh.

The concept of parametric meshes in this paper is a generalization of the classi-
cal tensor product mesh. Figure 2 shows a 2D tensor product mesh that contains
anisotropic rectangles with an arbitrary aspect ratio. These rectangles are known as
the cells of this 2D tensor product mesh and these grid points are called its vertices.
In our generalization, we relax the restrictions on the valence of each vertex to obtain
a global parametrization without trimming surfaces with more complex topology, such
as surfaces with holes inside.

Figure 2: A 2D tensor product mesh

For example, in Figure 3, there are some undirected graphs that share the same
topology with corresponding parametric meshes M . They are denoted as M as well.

In the following, we will rely on illustrations to introduce some concepts. In Figure
4(a), {vi : i = 1, 2 · · · , 10} and {vjb : j = 1, 2, · · · , 20} are vertices of M . vjb (j =
1, 2, · · · , 20) are boundary vertices and vi(i = 1, 2, · · · , 10) are interior vertices. If
the valence of an interior vertex is not 4, this vertex is irregular. Irregular vertices are
also called extraordinary vertices. Other vertices are regular. An edge of M connects
adjacent vertices. In Figure 4(a), v15

b v
20
b , v

1v2, v1v1
b are edges of M . Here, v15

b v
20
b is a

boundary edge of M , while v1v2, v1v1
b are interior edges. Quadrilaterals with curved

edges, such as v15
b v

20
b v

10v1, v3v4v18
b v

17
b and v5

bv
6
bv

6v5, are treated as cells of M .
Local frame of a cell C: For each cell of the parametric mesh, a local frame is
introduced. In Figure 4(a), {sC , tC} is a local frame of the cell C.
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(a) (b) (c)

Figure 3: Examples of the topology of parametric meshes (M s)

Local parameters of a cell C: A global spline on M can be described with local
parameters. For example, based on its local frames, in Figure 4(a), a spline with
C1 continuity globally is a bicubic polynomial over a cell C according to the local
parameters (sC , tC).

(a) (b)

Figure 4: An example of M for introducing the concepts of parametric meshes.

Associated with each vertex of M , splines will be introduced to represent parametriza-
tions in the following context. Based on the different types of vertices, splines will be
classified into two classes.
1. For an extraordinary vertex vir, there is a spline Bp

vir
defined at vir. Its coefficient

Pvir ∈ R2 stands for the position of vir. This spline is called the position spline of
vir.
2. For a regular vertex vr, three splines Bp

vr , B
s
vr and Bt

vr will be defined over M . For
Bp
vr , its coefficient Pvr ∈ R3 stands for the position of vr. Bp

vr is called the position
spline of vr. B

s
vr and Bt

vr are called tangent splines.
To explain the coefficients of Bs

vr and Bt
vr , the local frame attached to vr is in-

troduced. This local frame (svr , tvr) is the same as one of the local frames of the
cells around vr. For example, in Figure 4(b), at v8, there is a local frame (sv8 , tv8)
that is the same as the local frame of C1. Ts

vr (or Tt
vr) is the tangent vector of the

s-curve (or t-curve) at vr, where the s-curve (or t-curve) is the image of the mesh
grid line of parametrization along the svr (or tvr) direction. For example, in Figure
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5(b), the domain is an image of one of the parametrizations defined over M . By this
parametrization, the s-curve consists of the image of the edges v20

b v
8, v8v10

b of the direc-
tion that matches with the local frame sv8 attached to v8. The t-curve can be defined
similarly.

(a) M (b) The image of one of
parametrizations

Figure 5: The s-curve and the t-curve at v8

Based on these splines, a parametrization is constructed as a linear combination of
splines,

P =
∑
v∈V

PvB
p
v +

∑
vr∈Vr

(Ts
vrB

s
vr + Tt

vrB
t
vr) (1)

where V and Vr are the set of vertices and the set of regular vertices of M , respec-
tively. In this paper, parametrizations of a planar physical domain are considered, i.e.,
Pv,T

s
vr ,T

t
vr ∈ R2. For example, Figure 6(a) is the original parametrization. In Figure

6(b), by changing the Pv of the given vertex, the position of this vertex is changed.
In Figure 6(c) and Figure 6(d), by setting Ts

vr and Tt
vr , the parametrization has been

changed around the given vertex.
Jacobian of P: Let p be a point of M . There is a cell C of M such that p ∈ C.
Consider P|C , by Equation (1), P|C = (x(sC , tC), y(sC , tC)), where x(sC , tC), y(sC , tC)
are bicubic polynomials. Thus the Jacobian of P at p is∣∣∣∣∣ ∂x(sC ,tC)

∂sC

∂x(sC ,tC)
∂tC

∂y(sC ,tC)
∂sC

∂y(sC ,tC)
∂tC

∣∣∣∣∣
p

.

Remark 2.1. 1. In [20], at the regular vertex vr, there is another spline Bst
vr . From the

view of differential calculus, elements can be approximated by parallelograms if they are
small enough and distribute uniformly on a given physical domain. There is a standard
uniform map from a rectangle to a parallelogram by polynomials of degree 1. If we
represent these polynomials by Hermite splines in [20], the coefficients of Bst

vr are zeros.
Based on this observation, in this paper, we develop the reparametrization algorithm
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(a) The original parametrization (b) Changing Pv at the given ver-
tex in Figure 6(a)

(c) Changing Ts
v or Tt

v at the
given vertex in Figure 6(a)

(d) Changing Ts
v or Tt

v at the given
vertex in Figure 6(a)

Figure 6: The meaning of coefficients of splines defined over the parametric mesh in Figure 4(a)

only based on Bp
v , Bs

vr and Bt
vr . For the uniformity of the resulting parametrization by

the reparametrization algorithm in this paper, we state in the second point of Remark
3.3 and provide Example 3.2 later.
2. If the Jacobian of P at p is zero, p is called a singularity of P and P is singular at
p. Test functions used in isogeometric analysis compose the inverse of a parametrization
with spline basis functions. However, P is singular at extraordinary vertices. To
guarantee the regularity of test functions on a physical domain, the parametrization
algorithm developed in this paper satisfies the H1 integrability assumption outlined in
[17] (see Theorem 3.4).

2.2. Parametrizations of planar physical domains

In this section, we analyze a parametrization represented by the splines defined in
Section 2.1. Based on the meaning of the coefficients of each spline, parametrization
P can be decomposed into two parts, Pp and Pt, i.e.,

P = Pp + Pt,

where Pp =
∑

v∈V PvB
p
v , Pt =

∑
vr∈Vr(T

s
vrB

s
vr + Tt

vrB
t
vr). Pv is the position coordi-

nates of the vertex v. Ts
vr and Tt

vr are the tangent vectors of the s-curve and t-curve
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at vr.
Pp: For this part of the parametrization, the coefficients of the position splines are the
positions of the vertices on the physical domain. We modify Pp by distributing the
layout of an undirected graph [22, 23] uniformly in Section 3.1. Take the parametriza-
tion presented in Figure 6(a), for example. This parametrization is only represented
by the position splines at each interior vertex, i.e., the coefficients of Ts

vr ,T
t
vr are zero.

The parametric lines gather at s-curves and t-curves at each vertex. The following
lemma explains this phenomenon and it is proved in Section 6.

Lemma 2.2. The Jacobian of Pp is zero along s-curves and t-curves at any vertex of
M .

Therefore, it is necessary to add a non-trivial Pt to obtain a uniform parametrization
within each element and a better Jacobian.
Pt: Adding a non-trivial Pt, the Jacobian of P will be modified from the original
one. For example, Figure 7(a) and Figure 7(b) illustrate this process: by adding a non-
trivial Pt at the interior vertices of M , we observer that the parametrization becomes
smoother than the original parametrization in Figure 6(a). We develop an algorithm
in Section 3.2 called the smoothing algorithm for choosing a suitable Pt at the regular
interior vertices of the parametric mesh.

(a) Adding an non-trivial Pt at
the regular interior vertices to the
parametrization shown in Figure
6(a)

(b) The parametric mesh and its regular
interior vertices marked in red

Figure 7: Change of coefficients of tangent splines at the regular interior vertices

3. The parametrization algorithm

In this section, we develop a reparametrization algorithm with fixed boundaries
of P0 to obtain a uniform injective H1-parametrization, where P0 is a given initial
parametrization.

This reparametrization algorithm consists of two steps (Sections 3.1 and 3.2). In
the first step (Section 3.1), we distribute the layout of an undirected graph with fixed
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vertex positions on the boundaries as uniform as possible within the given physical
domain. In other words, we re-determine the coefficients of position splines at interior
vertices such that elements on the physical domain distribute as uniformly as possible.
The second step is the smoothing algorithm, presented in Section 3.2. By modifying
the tangent splines’ coefficients at each interior regular vertex, this step ensures that
the resulting parametrization is as uniform as possible in each element. At the end
of this section (Section 3.3), we conclude this reparametrization algorithm with fixed
boundaries and analyze it.

3.1. The force-directed algorithm

To distribute the layout of an undirected graph with fixed vertex positions on
boundaries as uniformly as possible, in this section, we present an algorithm based
on the mass-spring model and the point-charge model, which is used as an auxiliary
technique.

On the one hand, considering a physical phenomenon, a linear elastic, isotropic and
homogeneous membrane with fixed boundaries must be non-overlapping and uniform
if the boundaries are non-overlapping. Because the mass-spring model can be derived
from continuum mechanics [24], it is frequently used to model deformable objects in
computer graphics [25, 26, 27, 28]. We simulate this elastic deformation process to
reparametrize the physical domain uniformly and without overlapping by the classi-
cal mass-spring model. In addition, in graph drawing of graph theory, force-directed
algorithms known as “spring embedders” are among the most flexible methods for
calculating layouts of simple undirected graphs (see [29], a survey [30]). These force-
directed algorithms tend to be aesthetically pleasing, exhibit symmetries, and tend to
produce crossing-free layouts for planar graphs.

On the other hand, the point-charge model is introduced as an auxiliary technique.
If we simulate this elastic model only by the mass-spring model on a concave planar
physical domain, the interior vertices at concave corners may be outside of this given
physical domain. Unlike in applications in computer graphics and graph drawing, the
boundary description is important for solving PDEs numerically. Thus, we suppose
that the boundaries of a physical domain and the vertices of its undirected graphs
carry the same type of charges to restrict the positions of the interior vertices within
the given physical domain.

In conclusion, a spring-dominant energy that evolves with time is presented. Let
Pi(t) be the position according to vi ∈ V o (i = 1, 2, · · · , n) and Pi(t) evolves with time,
t.

E(P1(t), P2(t), · · · , Pn(t)) =
∑
vi∈V o

||kFsp
i (t) + µFch

i (t)||2L2
, (2)

where k and µ are parameters of this model, Fsp
i (t) =

∑
Pj(t)∈N1(Pi(t))

−−−−−−→
Pi(t)Pj(t) and

Fch
i (t) =

∫
P∈∂Ω

−−−−→
Pi(t)P/(||

−−−−→
Pi(t)P ||L2)

2ds, where N1(Pi(t)) is the 1-neighborhood of
Pi(t). V o is the set of interior vertices of M . Ω is the physical domain. Fsp

i cor-
responds to the spring force at Pi(t), while Fch

i (t) describes the electric force from ∂Ω
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to Pi(t) to confine Pi(t) within Ω if the initial position of Pi(t) is within Ω. We take
k � µ > 0 such that the main forces come from the mass-spring model, i.e., this model
is spring-dominant. If Ω is convex, µ can be set as 0. When all of the positions Pi(t)
are in balance, the spring-dominant energy in (2) reaches its minimal value.

To minimize the spring-dominant energy that evolves with time, explicit or implicit
time integration methods are adopted [31, 32, 33]. The implicit time integration meth-
ods are stable but time-consuming; the explicit time integration methods are often fast,
but not sufficiently robust [33].

For the applications in isogeometric analysis, the reparametrization algorithm de-
veloped in this paper is a pre-processing step for solving PDEs to obtain a more efficient
and stable process for solving linear systems. However, explicit or implicit time integra-
tion methods introduce an additional linear system to solve the force-directed model,
and the size of this linear system is positively associated with the number of vertices
of parametric meshes. For example, in [32], the size of an involved linear system is
O(n), where n is the number of vertices. Thus, these algorithms may introduce an-
other linear system that needs to be solved. To avoid introducing an additional linear
system and find a fast solution of the force-directed model (2), we adopt the explicit
time integration method and solve this model locally, i.e., the new position of Pi(t) at
t0 + ∆t is predicted by Pi(t) and the force acting on Pi(t) at t (see Lemma 3.1).

Lemma 3.1. Suppose that the velocity of Pi(t) at t0 is 0, and mi is the mass of Pi(t).
Then,

Pi(t0 + ∆t)− Pi(t0) =
Fi(t0)∆t2

2mi

+ o(∆t2).

where Fi(t0) = Fsp
i (t0) + Fch

i (t0).

Thus,

Pi(t0 + ∆t)− Pi(t0) = ∆Pi(t0) ≈ Fi(t0)∆t2

2mi

. (3)

We can choose a suitable time step ∆t and parameters mi, k, µ. Considering the
expected uniformity, mi is taken as 1. The new position of Pi(t0+∆t) after one iteration
can be approximated by Pi(t0) + ∆Pi(t0). This lemma is proved in Section 6.

The algorithm goes as follows: Set parameters ε0, ∆t, k, µ and MaxIterNumber,
where ε0 is the parameter employed to judge whether this algorithm converges or
not, ∆t is the time step, k and µ are the parameters shown in Equation (2), and
MaxIterNumber is the maximum number of iteration of this algorithm.

For a discussion of robustness of this algorithm, please refer to Remark 3.5 in Section
3.3.
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Algorithm 1 Local Energy Reducing Algorithm

Require: Input the original positions of all of the interior points Pi, the paramet-
ric mesh M , ε0, ∆t, k, µ and MaxIterNumber. Set mi = 1, ε = ε0 + 1 and
IterationNum = 0.

Ensure:
while (ε > ε0)&&(IterationNum < MaxIterNumber) do
ε← 0
IterationNum← IterationNum+ 1
for all Pi do

Compute ∆Pi based on Equation (3)
ε← ε+ ||∆Pi||L2

Pi ← Pi + ∆Pi
end for
ε← ε/N o

end while

In this algorithm, ε is a parameter that is used to store the average of the relative
displacement of all interior Pi for each iteration. If ε is small enough, {Pi} should be
in a balance state, i.e., if ε < ε0, this algorithm converges. N o is the number of interior
points.

3.2. The smoothing algorithm

Due to Algorithm 1, the position splines’ coefficients at the interior vertices have
been obtained. In this section, to obtain uniform parametrizations within each element,
a method for determining the coefficients of tangent splines at the interior regular
vertices is presented. To simplify the process, we assume that all of the extraordinary
vertices are surrounded by regular ones. This can be achieved by subdivision. The
following theorem provides an important observation.

Theorem 3.2. Let M be a parametric mesh and C be one of its cells. Suppose that
C = [0, 1]×[0, 1] and its local parameters are (s, t). Denote its corners (0, 0), (1, 0), (1, 1),
(0, 1) as v1, v2, v3, v4 respectively. Denote the positions of v1, v2, v3, v4 on the plane of
the physical domain as P1, P2, P3, P4, respectively. By taking,

(1). Ts
v1

= Ts
v2

=
−−→
P1P2, Tt

v1
= Tt

v4
=
−−→
P1P4, Tt

v3
= Tt

v2
=
−−→
P2P3, Ts

v3
= Ts

v4
=
−−→
P4P3, if

v1, v2, v3, v4 are regular vertices of M , and

(2). Ts
v2

=
−−→
P1P2, Tt

v4
=
−−→
P1P4, Tt

v3
= Tt

v2
=
−−→
P2P3, Ts

v3
= Ts

v4
=
−−→
P4P3, if a vertex v1 is

an extraordinary vertex of M ,
a parametrization P can be constructed by Equation (1). If P1, P2, P3, P4 form a convex
quadrilateral, P is injective over C.

Proof. Let Pi =
−−→
OPi, where O(0, 0) is the origin of the plane of the physical domain.
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Case 1: If v1, v2, v3, v4 are regular vertices of M ,

P|C(s, t) = T(s, t) =
3∑

i,j=0

Ci,jB
(4)
i (s)B

(4)
j (t),

where B
(n)
i (s) is the i-th Bézier polynomial of degree (n − 1), the Bézier coeffients

C = (Ci,j)
3
i,j=0 =

P1
1
3
P4 + 2

3
P1

2
3
P4 + 1

3
P1 P4

2
3
P1 + 1

3
P2

1
3
P1 + 1

3
P2 + 1

3
P4

1
3
P1 + 1

3
P3 + 1

3
P4

2
3
P4 + 1

3
P3

1
3
P1 + 2

3
P2

1
3
P1 + 1

3
P2 + 1

3
P3

1
3
P2 + 1

3
P3 + 1

3
P4

2
3
P3 + 1

3
P4

P2
1
3
P3 + 2

3
P2

2
3
P3 + 1

3
P2 P3


By derivation,

∂T

∂s
= λ1,1(s, t)(P3 −P4) + λ1,2(s, t)(P2 −P1), (4)

where

λ1,1(s, t) = B
(4)
3 (t) +B

(4)
2 (t)(B

(3)
0 (s) +B

(3)
2 (s)) +B

(4)
1 (t)B

(3)
1 (s) ≥ 0;

λ1,2(s, t) = B
(4)
0 (t) +B

(4)
1 (t)(B

(3)
0 (s) +B

(3)
2 (s)) +B

(4)
2 (t)B

(3)
1 (s) ≥ 0.

∂T

∂t
= λ2,1(s, t)(P4 −P1) + λ2,2(s, t)(P3 −P2), (5)

where

λ2,1(s, t) = B
(4)
0 (s) +B

(4)
1 (s)(B

(3)
0 (t) +B

(3)
2 (t)) +B

(4)
2 (s)B

(3)
1 (t) ≥ 0;

λ2,2(s, t) = B
(4)
3 (s) +B

(4)
2 (s)(B

(3)
0 (t) +B

(3)
2 (t)) +B

(4)
1 (s)B

(3)
1 (t) ≥ 0.

Thus,

∂T

∂s
× ∂T

∂t
=λ1,1λ2,1(P3 −P4)× (P4 −P1) + λ1,1λ2,2(P3 −P4)× (P3 −P2)

+ λ1,2λ2,1(P2 −P1)× (P4 −P1) + λ1,2λ2,2(P2 −P1)× (P3 −P2).
(6)

Moreover,

∂T

∂s
× ∂T

∂t
= det

 i j k
∂x
∂s

∂y
∂s

0
∂x
∂t

∂y
∂t

0

 = J (s, t)k,
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where i, j are unit vectors along the x-direction and the y-direction on the physical
domain, respectively; k = i× j; J (s, t) is the Jacobian of T(s, t) = (x(s, t), y(s, t)).

Because the quadrilateral given by P1, P2, P3, P4 is convex, (P3 −P4)× (P4 −P1),
(P3 − P4) × (P3 − P2), (P2 − P1) × (P4 − P1) and (P2 − P1) × (P3 − P2) have the
same direction. They are along the direction of k or −k. Considering λi,j(s, t) ≥ 0 and
(6), J (s, t) is positive or negative, if and only if ||∂T

∂s
× ∂T

∂t
|| 6= 0. Thus, we consider the

solution of

||∂T

∂s
× ∂T

∂t
|| = 0. (7)

Because (P3 − P4) × (P4 − P1), (P3 − P4) × (P3 − P2), (P2 − P1) × (P4 − P1) and
(P2−P1)×(P3−P2) have the same direction and λi,j(s, t) ≥ 0 in (6), (s, t) ∈ [0, 1]×[0, 1]
satisfies (7) if and only if 

λ1,1(s, t)λ2,1(s, t) = 0;

λ1,1(s, t)λ2,2(s, t) = 0;

λ1,2(s, t)λ2,1(s, t) = 0;

λ1,2(s, t)λ2,2(s, t) = 0.

(8)

Moreover, λ1,1(s, t) = 0 iff t = 0; λ1,2(s, t) = 0 iff t = 1; λ2,1(s, t) = 0 iff s = 1; and
λ2,2(s, t) = 0 iff s = 0. Thus, ∀(s, t) ∈ [0, 1] × [0, 1], which does not satisfy (8). i.e.,
J (s, t) > 0 (or < 0) for all (s, t) ∈ C, i.e., P|C(s, t) is injective.
Case 2: If v1 is an extraordinary vertex and v2, v3, v4 are regular vertices of M ,

P|C(s, t) = T(s, t) =
3∑

i,j=0

Ci,jB
(4)
i (s)B

(4)
j (t),

where the Bézier coefficients C = (Ci,j)
3
i,j=0 =

P1 P1
2
3
P4 + 1

3
P1 P4

P1 P1
1
3
P1 + 1

3
P3 + 1

3
P4

2
3
P4 + 1

3
P3

1
3
P1 + 2

3
P2

1
3
P1 + 1

3
P2 + 1

3
P3

1
3
P2 + 1

3
P3 + 1

3
P4

2
3
P3 + 1

3
P4

P2
1
3
P3 + 2

3
P2

2
3
P3 + 1

3
P2 P3

 .

By derivation,

∂T

∂s
= µ1,1(s, t)(P3 −P4) + µ1,2(s, t)(P2 −P1) + µ1,3(s, t)(P3 −P1), (9)

where,

µ1,1(s, t) = B
(4)
3 (t) +B

(4)
2 (t)(B

(3)
0 (s) +B

(3)
2 (s)) ≥ 0;

µ1,2(s, t) = B
(4)
0 (t)(2B

(3)
1 (s) +B

(3)
2 (s)) +B

(4)
1 (t)(B

(3)
1 (s) +B

(3)
2 (s)) +B

(4)
2 (t)B

(3)
1 (s) ≥ 0;

µ1,3(s, t) = B
(3)
1 (s)B

(4)
1 (t) ≥ 0.
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∂T

∂t
= µ2,1(s, t)(P4 −P1) + µ2,2(s, t)(P3 −P2) + µ2,3(s, t)(P3 −P1), (10)

where,

µ2,1(s, t) = B
(4)
0 (s)(2B

(3)
1 (t) +B

(3)
2 (t)) +B

(4)
1 (s)(B

(3)
1 (t) +B

(3)
2 (t)) +B

(4)
2 (s)B

(3)
1 (t) ≥ 0;

µ2,2(s, t) = B
(4)
3 (s) +B

(4)
2 (s)(B

(3)
0 (t) +B

(3)
2 (t)) ≥ 0;

µ2,3(s, t) = B
(4)
1 (s)B

(3)
1 (t) ≥ 0.

By (9) and (10),

∂T

∂s
× ∂T

∂t
=µ1,1µ2,1(P3 −P4)× (P4 −P1) + µ1,1µ2,2(P3 −P4)× (P3 −P2)

+ µ1,1µ2,3(P3 −P4)× (P3 −P1) + µ1,2µ2,1(P2 −P1)× (P4 −P1)

+ µ1,2µ2,2(P2 −P1)× (P3 −P2) + µ1,2µ2,3(P2 −P1)× (P3 −P1)

+ µ1,3µ2,1(P3 −P1)× (P4 −P1) + µ1,3µ2,2(P3 −P1)× (P3 −P2).

(11)

Moreover, because the quadrilateral given by P1, P2, P3, P4 is convex, the following
vectors share the same direction:

(P3 −P4)× (P4 −P1), (P3 −P4)× (P3 −P2), (P3 −P4)× (P3 −P1),

(P2 −P1)× (P4 −P1), (P2 −P1)× (P3 −P2), (P2 −P1)× (P3 −P1),

(P3 −P1)× (P4 −P1), (P3 −P1)× (P3 −P2)

Thus, similar to Case 1, J(s, t) is positive or negative, if and only if ||∂T
∂s
× ∂T

∂t
|| 6= 0,

i.e., we consider

||∂T

∂s
× ∂T

∂t
|| = 0,

if and only if, in Equation (11),
µ1,1(s, t)µ2,1(s, t) = 0;µ1,1(s, t)µ2,2(s, t) = 0;

µ1,1(s, t)µ2,3(s, t) = 0;µ1,2(s, t)µ2,1(s, t) = 0;

µ1,2(s, t)µ2,2(s, t) = 0;µ1,2(s, t)µ2,3(s, t) = 0;

µ1,3(s, t)µ2,1(s, t) = 0;µ1,3(s, t)µ2,2(s, t) = 0.

(12)

In addition,

µ1,1(s, t) = 0 iff t = 0; µ1,2(s, t) = 0 iff t = 1 or s = 0;

µ1,3(s, t) = 0 iff s = 0 or s = 1 or t = 0 or t = 1;

µ2,1(s, t) = 0 iff s = 1 or t = 0;µ2,2(s, t) = 0 iff s = 0;

µ2,3(s, t) = 0 iff s = 0 or s = 1 or t = 0 or t = 1;
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Thus, there is only one solution of (12), i.e., (0, 0) ∈ [0, 1]× [0, 1], i.e.,{
J (0, 0) = 0;

J (s, t) > 0(or < 0), (s, t) 6= (0, 0)
(13)

i.e., P|C(s, t) is injective because (0, 0) is isolated. �

For Theorem 3.2, there is a remark:

Remark 3.3.

1. If an initial layout of the undirected graph consists of non-overlapping convex quadri-
laterals, this convex structure is maintained by the spring-dominant model (2) because a
non-convex structure is not balanced. We can choose a suitable initial parametrization
such that its layout of the undirected graph consists of non-overlapping convex quadri-
laterals. For the details of the existence of satisfied initial parametrizations, please refer
to Remark 3.5.

2. Theorem 3.2 provides a method to set the coefficients of the tangent splines such that
the resulting parametrization is as uniform as possible within an element. For exam-
ple, in Case 1, if a quadrilateral formed by P1, P2, P3, P4 is a parallelogram, ∂T

∂s
and

∂T
∂t

are constants by Equations (4) and (5), i.e., P|C(s, t) is uniform. Especially, in
the h-refinement process, the elements’ sizes on the physical domain become smaller
and most of the cells satisfy the condition of Case 1. By Algorithm 1, the vertices of
its undirected graph distribute as uniformly as possible on the physical domain. Thus,
quadrilaterals can be approximated by parallelograms when the size of elements is small
and uniform enough. In Example 3.2, there is a numerical experiment about the uni-
formity of H1-parametrizations by the reparametrization algorithm developed in this
paper.

Figure 8: Control Points P(i,j) in Case 2

Theorem 3.4. As mentioned in Theorem 3.2, P|C satisfies the H1-integrability as-
sumption, i.e., by this parametrization the test functions are H1 on P(C).
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Proof. For Case 1, based on J (s, t) > 0 (or < 0) and the continuity of P|C(s, t),
there exists a C1 inverse map of P|C(s, t) locally. Thus, the test functions on the
physical domain are C1 (⊂ H1). In the following, a detailed proof of Case 2 is
presented.

By the Jacobian of P|C in (13), there is only one isolated singularity at P1. Based
on the Bézier coefficients C in Case 2, the control points {P(i,j)}3

i,j=0 are shown in
Figure 8.

In Assumption 5.1 of [17], the degree is p = (3, 3) and we take α = (2, 2), i.e.,
α1 = 2, α2 = 2. The labels are shown in Figure 9. The control points {P(i,j)}3

i,j=0

satisfy the following:
1. The control points P(i,j) = P1 when (i, j) ∈ Dα, and the other control points
P(i,j) 6= P1. Here, Dα = {(i, j) : 0 ≤ i ≤ α1 − 1, 0 ≤ j ≤ α2 − 1};
2. The triangles4(P(0,0),P(α1,0),P(α1,1)),4(P(0,0),P(α1,0),P(0,α2)), and4(P(0,0),P(0,α2),
P(1,α2)) do not degenerate because the quadrilateral given by P1, P2, P3, P4 is convex.

Thus, P|C satisfies H1-integrability assumption 5.1 outlined in [17], i.e., by this
parametrization, the test functions are H1 on P(C).

Figure 9: Labels in Assumption 5.1 of [17]

�
In the following, we start to set the coefficients of the tangent splines in the general

case. Let vi be a regular interior vertex of M and assume that its position has been de-
termined by Algorithm 1. There are four cells that take vi as their corner vertex because
vi is regular. Based on Theorem 3.2 over a cell, the tangents at this regular vertex vi
are estimated by Pi, P

1
i , P

2
i , P

3
i , P

4
i , where Pi = P(vi) and N1(Pi) = {P 1

i , P
2
i , P

3
i , P

4
i }

shown in Figure 10, and C1, C2, C3, C4 are the cells around vi.
If C1, C2, C3, C4 have the same local frame and Ci = [0, 1] × [0, 1], the tangent

vectors at vi can be taken as an average of the coefficients given by Theorem 3.2 when
we consider these coefficients cell by cell, i.e.,

Ts
vi

= 1/2
−−→
PiP

2
i + 1/2

−−→
P 4
i Pi; Tt

vi
= 1/2

−−→
PiP

1
i + 1/2

−−→
P 3
i Pi. (14)

In general, C1, C2, C3, C4 can have different local frames, if the direction of the
s-curve of vi is along PiP

2
i and the direction of the t-curve at v is along PiP

1
i , then,
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Figure 10: The interior regular vertex Pi and N1(Pi) = {P 1
i , P

2
i , P

3
i , P

4
i }

Ts
vi

=
1

2`1

−−→
P 4
i Pi +

1

2`2

−−→
PiP

2
i ; Tt

vi
=

1

2`3

−−→
P 3
i Pi +

1

2`4

−−→
PiP

1
i , (15)

where `1 is the distance between v4
i and vi considered in C4, `2 is the distance between

vi and v2
i considered in C1, `3 is the distance between v3

i and vi considered in C2, and
`4 is the distance between vi and v1

i considered in C1. Select similarly Ts
vi
,Tt

vi
in the

other cases of the local frame at vi. In the following, we use Example 3.1 to explain
(15).

Example 3.1. We consider a parametric mesh obtained by uniformly subdividing C =
[0, 1]× [0, 1] in Theorem 3.2 into 4 subcells. Using the labels in Figure 10, C1, C2, C3, C4

have the same local frame and vi(1/2, 1/2), v1
i (1/2, 1), v2

i (1, 1/2), v3
i (1/2, 0), v4

i (0, 1/2).
Thus, `1 = `2 = `3 = `4 = 1/2 and

Pi = P(vi) = 1/4(P1 + P2 + P3 + P4);

P 1
i = P(v1

i ) = 1/2(P3 + P4); P 3
i = P(v3

i ) = 1/2(P1 + P2);

P 2
i = P(v2

i ) = 1/2(P2 + P3); P 4
i = P(v4

i ) = 1/2(P1 + P4);

where P(s, t) maps C to the quadrilateral formed by P1, P2, P3, P4 defined in Case 1
of Theorem 3.2. By (15),

Ts
vi

= 1/2(P2 − P1) + 1/2(P3 − P4); Tt
vi

= 1/2(P4 − P1) + 1/2(P3 − P2).

By Theorems 3.2 and 3.4 and Equation (15), we can re-set the coefficients of the
tangent splines such that the resulting parametrizations are as uniform as possible in
each element.
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3.3. Reparametrization algorithm

Base on Sections 3.1 and 3.2, we present the complete reparametrization algorithm
with fixed initial boundaries and analyze its initial parametrization as well as the
uniformity of H1-parametrizations.

Algorithm 2 The Reparametrization Algorithm

Require: Input the original positions of all the interior points Pi, the parametric
mesh M , the initial parametrization P0, and the parameters ε0, ∆t, k, µ and
MaxIterNumber in Algorithm 1.

Ensure:
% Distribute elements on a given physical domain as uniformly as possible:
Input the parameters and compute the balance positions of interior points, {P b

i }, by
Algorithm 1.
{Pi} ← {P b

i }.
% Make the resulting parametrization as uniformly as possible in each element:
for {Pi} do

if vi is a regular vertex, where then
Compute Pi’s 1-neighbourhood N1(Pi) based on the topology of M
Determine Ts

vi
and Tt

vi
by Equations (15) in Section 3.2, where vi is the vertex

corresponding to Pi.
end if

end for
% Restore the given boundaries:
for the boundary vertex vbj of M do

The coefficients of splines defined at vbj inherit from P0.
end for

In Sections 3.1 and 3.2, there are some requirements regarding the initial parametriza-
tion of the reparametrization algorithm (Algorithm 2). The following remark addresses
the choice of initial parametrizations.

Remark 3.5. In Algorithm 1, we adopt the explicit time integration method and solve
the model (2) locally to avoid introducing another linear system and to find a solution
quickly. Besides all the initial vertex positions should be within the physical domain,
an initial parametrization whose vertices are not far from their balance positions can
enhance the robustness of Algorithm 1. In other words, we try to obtain a uniform
initial parametrization. Moreover, in Section 3.2, an initial parametrization is expected
to satisfy that its layout of the undirected graph consists of non-overlapping convex
quadrilaterals. Based on the applications noted in the introduction, there are two ways
to construct initial parametrizations:
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1. Construct an initial parametrization from given boundaries. Denote the physical do-
main bounded by boundaries as Ω. We construct an initial parametrization by following
these steps:

(a). Choose a polygon Ωp ⊂ Ω to approximate Ω, where the boundary vertices of Ωp

are on the boundaries of Ω.

(b). Triangulate of Ωp as uniformly as possible, perhaps using Delaunay triangulations
[34, 35]. It helps to obtain a uniform distribution of the layout of the resulting graph.

(c). For each triangle, connect its barycenter with the midpoints of its sides. A non-
overlapping convex quadrilateral decomposition of Ωp is obtained.

(d). For a boundary vertex of this decomposition of Ωp, its coefficients are determined
by describing these given boundaries of Ω by its splines, such as fitting the boundaries;
for an interior point of this decomposition, its coefficient of the position splines is
determined by its current position, and its coefficients of the tangent splines are 0 if
there are tangent splines.

Then, the initial parametrization that meets the requirements is obtained.

2. An initial parametrization is a H1-parametrization defined on a coarse paramet-
ric mesh. This case exists in the h-refinement process of isogeometric analysis. After
representing this H1-parametrization on the finer parametric mesh, it is a good initial
parametrization because H1-parametrizations are uniform within elements. For exam-
ple, after subdividing the parametric mesh in Example 3.1, Fsp

Pi
= 0, which means Pi is

near to its balance position on the finer mesh.

To test the uniformity of H1-parametrizations, in Example 3.2, we compare the
H1-parametrization with the standard uniform parametrization of a rectangle.

Example 3.2. Suppose the physical domain Ω = [0, 2] × [0, 2] and the paramet-
ric domain Σ = [0, 4] × [0, 4]. The standard uniform parametrization is expected as
Q0(s, t) = (0.5s, 0.5t). Its Jacobian JQ0(s, t) = 0.25.

We input an initial parametrization P0 shown in Figure 11(a) that has the same
boundary description as Q0. The parametric mesh is a tensor-product mesh with
1681 vertices. Take the parameters ε0 = 0.00001,∆t = 0.1, k = 1, µ = 0. Then,
by the reparametrization algorithm (Algorithm 2), we obtain the H1-parametrization
P1 shown in Figure 11(b). In Figure 11(c), we compare the Jacobian of P1 with
JQ0. There is no too much difference between the H1-parametrization and the stan-
dard uniform parametrization, i.e., the H1-parametrization shown in Figure 11(b) is
uniform.

4. Numerical experiments

In this section, experiments are presented. As we state in the introduction, based on
the results of the condition numbers’ bounds in isogeometric analysis and the classical
FEM, we expect a uniform parametrization to obtain a smaller condition number that
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(a) P0 (b) P1 (c) JP1
− JQ0

Figure 11: The H1-parametrization of the rectangle [0, 2]× [0, 2] by the reparametrization algorithm
(Algorithm 2)

brings efficiency and numerical stability. Considering to solve the elliptic boundary
problem (16) in isogeometric analysis framework, we compare their condition num-
bers under parametrizations that have different uniformity, where basis functions are
chosen as Hermite basis functions of the spline space over M defined in [20]. In the
following experiments, we find that the condition numbers become smaller when the
parametrization becomes more uniform.

−∆u = f ;

u|∂Ω = 0.
(16)

The first experiment is solving the elliptic boundary problem (16) on a square
domain shown in Figure 12(a). Here we compare the condition numbers with different
parametrizations. These parametrizations include a standard uniform parametrization,
a parametrization with singularities and a parametrization without singularities. The
second experiment is solving (16) on the four leaf clover-shape physical domain, as
shown in Figure 12(b). This physical domain has complex geometric features: sharp
corners and non-convex shapes. The third experiment is solving (16) on the porous
physical domain illustrated in Figure 12(c), which has complex topological features.

4.1. A square domain

In this experiment, we compare the condition numbers by different parametrizations
of a square domain. In order to make a comparison of test results, parametric meshes
of these parametrizations share the same number of cells, i.e., the numbers of elements
on the square domain are the same, where the numbers of elements on the square
domain are chosen as 288, 800, 1568, 2592 respectively. For instance, in Figures 13,
14(a), 14(b), 15(a) and 15(b), there are 288 elements on the square domain by these
parametrizations.

In Figures 16 and 17, the condition numbers by P i(s, t) and its H1-parametrization
P i

H1(s, t) are presented. By the results in Figures 16 and 17,

Cond(P i
H1(s, t)) < Cond(P i(s, t)),
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(a) A square domain (b) A four leaf clover-like physi-
cal domain

(c) A perforated model struc-
ture physical domain

Figure 12: The physical domains considered in Section 4

Figure 13: A standard uniform parametrization I(s, t)

(a) P1
H1(s, t) (b) P1(s, t)

Figure 14: The H1-Parametrization P1
H1(s, t) and its initial parametrization P1(s, t)
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(a) P2
H1(s, t) (b) P2(s, t)

Figure 15: The H1-Parametrization P2
H1(s, t) and its initial parametrizationP2(s, t)
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Figure 16: The condition numbers by P1(s, t) and P1
H1(s, t)
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Figure 17: The condition numbers by P2(s, t) and P2
H1(s, t)

where i = 1, 2; Cond(P(s, t)) is the condition number by P(s, t).
In Figure 18, for the same physical domain (the square domain), we compare the

condition numbers by P1
H1(s, t), P2

H1(s, t) and the standard uniform parametrization
I(s, t). P1

H1(s, t) and I(s, t) share the same structures of parametric meshes. In Figure
18,

Cond(P1
H1(s, t)) ≈ Cond(I(s, t)).

Moreover, for P2
H1(s, t) and I(s, t), they are share different the structures of parametric

meshes. In Figure 18,

Cond(I(s, t)) < Cond(P2
H1).

4.2. A four leaf clover-like physical domain

In this experiment, a four leaf clover-like physical domain is taken as a physical
domain. There are two initial parametrizations P1 and P2 shown in Figures 19(a)
and 20(a). We modify them by Algorithm 2 and obtain H1-parametrizations P1

H1 and
P2

H1 shown in Figures 19(b) and 20(b) respectively, where the parameters are taken
as ε0 = 0.001, ∆t = 0.1, k = 0.4 and µ = 0.01. By computing the condition numbers
of the stiffness matrices of the elliptic boundary problem,

Cond(P1
H1(s, t)) = 1.5404× 107 < Cond(P1(s, t)) = 1.1476× 109

Cond(P2
H1(s, t)) = 1.2530× 107 < Cond(P2(s, t)) = 1.5692× 107.
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Figure 18: The condition numbers by P1
H1(s, t), P2

H1(s, t) and I(s, t)

(a) P1 (b) P1
H1

Figure 19: P1 and P1
H1
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(a) P2 (b) P2
H1

Figure 20: P2(s, t) and P2
H1(s, t)

Furthermore, by Algorithm 2, P2 converges to the H1-parametrization P2
H1 shown

in Figure 20(b) after 107 iterations in Algorithm 1. In the convergence process, the po-
sitions of the vertices become more and more uniform and the convex decomposition is
maintained. In Figures 21(a) to 21(d), we collect the vertices’ positions in this process.
We construct parametrizations by these positions (in Figures 21(a) to 21(d)) and by
Equation (15) in Section 3.2. These parametrizations are denoted as P2

a ,P
2
b ,P

2
c ,P

2
d .

Computing the condition numbers of the stiffness matrices of the elliptic boundary
problem directly, we obtain Cond(P2

a) = 1.5692 × 107, Cond(P2
b ) = 1.3926 × 107,

Cond(P2
c ) = 1.3069× 107 and Cond(P2

d) = 1.2530× 107, i. e.,

Cond(P2
a) > Cond(P2

b ) > Cond(P2
c ) > Cond(P2

d)

The condition number becomes smaller and smaller when the parametrization becomes
more and more uniform.

4.3. A porous physical domain

We consider a porous structure as a physical domain that has a complex topological
structure.

The initial parametrization P is given in Figure 22(a). The layout of the position
of vertices of P in Figure 23(a) under this initial parametrization is a convex decom-
position of the physical domain. By the reparametrization algorithm (Algorithm 2), P
converges to the H1-parametrization PH1 shown in Figure 22(b) after 137 iterations
in Algorithm 1, where ε0 = 0.001, ∆t = 0.1, k = 1 and µ = 0.001.

In the convergence process, the positions of vertices become more and more uniform
and the convex decomposition is maintained. In Figures 23(a) to 23(d), we collect the
vertices’ positions in this process. We construct parametrizations by these positions (in
Figures 23(a) to 23(d)) and by Equation (15) in Section 3.2. These parametrizations
are denoted as Pa,Pb,Pc,Pd. Computing the condition numbers of the stiffness
matrices of the elliptic boundary problem with Hermite basis functions directly, we
obtain Cond(Pa) = 8.9074 × 106,Cond(Pb) = 5.7810 × 106,Cond(Pc) = 4.2948 ×
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(a) 0 iteration (initial positions) (b) 20 iterations

(c) 60 iterations (d) 107 iterations

Figure 21: The positions of vertices in the convergence progress of Algorithm 1

(a) The initial parametrization
P

(b) The H1- parametrization
PH1

Figure 22: The initial parametrization P and the H1-parametrization PH1
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(a) 0 iteration (initial posi-
tions)

(b) 40 iterations

(c) 80 iterations (d) 132 iterations

Figure 23: The positions of vertices in the convergence progress of Algorithm 1

106,Cond(Pd) = 3.4927× 106, i.e.,

Cond(Pa) > Cond(Pb) > Cond(Pc) > Cond(Pd).

The condition number becomes smaller and smaller when the parametrization becomes
more and more uniform.

5. Conclusions and future work

This paper presented a reparametrization method with fixed boundaries over com-
plex planar physical domains. Bi-cubic splines with rigid transition maps in [20]
are used to represent the complex physical domains globally. The design of the
parametrization algorithm is based on the three basic requirements, i.e., injective
parametrization, efficiency and numerical stability, and the regularity property of
test functions. By the reparametrization algorithm, a global uniform injective H1-
parametrization is generated. By this reparametrization, an efficient and stable solu-
tion process can be expected.

Within isogeometric analysis, for a better future solution of PDEs over a complex
physical domain, besides the parametrization algorithm shown in this paper, an al-
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gorithm should be developed to obtain a better boundary representation for a better
approximation of the original physical domains.

6. Appendix

In this section, the proofs of lemmas and theorem are presented.
Let P be a parametrization defined over a parametric mesh M and P = Pp+Pt,

where Pp is the position part of P and Pt is the tangent part of P.
Suppose that C = [0, 1]× [0, 1] be a cell of M with v1(0, 0), v2(1, 0), v3(1, 1), v4(0, 1)

as its vertices. Let P1, P2, P3, P4 be the position of these vertices with the help of Pp

in [20], then, over C, Pp is a bicubic polynomial with vector coefficients, i. e.,

Pp|C(s, t) =
−−→
OP1h0(s)h0(t) +

−−→
OP2h1(s)h0(t) +

−−→
OP3h1(s)h1(t) +

−−→
OP4h0(s)h1(t), (17)

where, h0(s) = (1 + 2s)(1− s)2, h1(s) = s2(3− 2s).
Now we can prove Lemma 2.2:

Proof. Suppose
−−→
OPi = (xi, yi), i = 1, 2, 3, 4. Then,

Pp|C(s, t) =(x(s, t), y(s, t));

where, x(s, t) =
∑4

i=1 xiBi(s, t), y(s, t) =
∑4

i=1 yiBi(s, t)). Thus,

∂x

∂s
(0, t) = 0;

∂x

∂s
(1, t) = 0;

∂x

∂t
(s, 0) = 0;

∂x

∂t
(s, 1) = 0;

∂y

∂s
(0, t) = 0;

∂y

∂s
(1, t) = 0;

∂y

∂t
(s, 0) = 0;

∂y

∂t
(s, 1) = 0;

Then Jacobians along the mesh lines,

J (0, t) =

∣∣∣∣ ∂x
∂s

(0, t) ∂x
∂t

(0, t)
∂y
∂s

(0, t) ∂y
∂t

(0, t)

∣∣∣∣ = 0; J (1, t) =

∣∣∣∣ ∂x
∂s

(1, t) ∂x
∂t

(1, t)
∂y
∂s

(1, t) ∂y
∂t

(1, t)

∣∣∣∣ = 0;

J (s, 0) =

∣∣∣∣ ∂x
∂s

(s, 0) ∂x
∂t

(s, 0)
∂y
∂s

(s, 0) ∂y
∂t

(s, 0)

∣∣∣∣ = 0; J (s, 1) =

∣∣∣∣ ∂x
∂s

(s, 1) ∂x
∂t

(s, 1)
∂y
∂s

(s, 1) ∂y
∂t

(s, 1)

∣∣∣∣ = 0.

�
Proof of Lemma 3.1
Proof. Because the velocity of Pi(t) at t0 is 0,

Pi(t0 + ∆t)− Pi(t0) =

∫ t0+∆t

t0

dt

∫ t

t0

Fi(s)

mi

ds

=

∫ t0+∆t

t0

Fi(s)

mi

(t0 + ∆t− s)ds

=
Fi(t0 + θ∆t)

mi

∫ t0+∆t

t0

(t0 + ∆t− s)ds

=
Fi(t0 + θ∆t)

2mi

∆t2
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where θ ∈ [0, 1]. Thus,

Pi(t0 + ∆t)− Pi(t0) =
Fi(t0)∆t2

2mi

+ o(∆t2).

�
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