On the Hausdorff measure of regular ω-languages in Cantor space

Abstract : This paper deals with the calculation of the Hausdorff measure of regular ω-languages, that is, subsets of the Cantor space definable by finite automata. Using methods for decomposing regular ω-languages into disjoint unions of parts of simple structure we derive two sufficient conditions under which ω-languages with a closure definable by a finite automaton have the same Hausdorff measure as this closure. The first of these condition is related to the homogeneity of the local behaviour of the Hausdorff dimension of the underlying set, and the other with a certain topological density of the set in its closure.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2015, Vol. 17 no. 1 (in progress) (1), pp.357--368
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01196856
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 10 septembre 2015 - 15:17:18
Dernière modification le : jeudi 7 septembre 2017 - 01:03:43
Document(s) archivé(s) le : mardi 29 décembre 2015 - 00:01:47

Fichier

dmtcs-17-1-23.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01196856, version 1

Collections

Citation

Ludwig Staiger. On the Hausdorff measure of regular ω-languages in Cantor space. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2015, Vol. 17 no. 1 (in progress) (1), pp.357--368. 〈hal-01196856〉

Partager

Métriques

Consultations de la notice

76

Téléchargements de fichiers

221