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In this paper we discuss how to assess the performance of algorithms for optimisation problems in a way that balances
solution quality and time. We propose measures of cost-effectiveness for such algorithms. These measures give the
gain in solution quality per time unit over a sequence of inputs, and give a basis for deciding which algorithm to
use when aiming for best accumulated solution quality for a given time investment over such an input sequence.
Cost-effectiveness measures can be defined for both average-case and worst-case performance. We apply these ideas
to three problems: maximum matching, graph colouring and Kolmogorov complexity. For the latter, we propose a
cost-effectiveness measure for the time-bounded complexity Kτ (x), and argue that it can be used to measure the
cost-effectiveness both of finding a short program to output x and of generating x from such a program. Under
mild assumptions, we show that (roughly speaking) if the time-bounded complexity Kτ (x) is to be a cost-effective
approximation to K(x) then τ(n) = O(n2).

Keywords: optimisation, algorithms, cost-effectiveness, approximation algorithm, performance measure, graph colour-
ing, matching, Kolmogorov complexity

1 Introduction
In solving an optimisation problem, we seek an algorithm that is, among other things, (a) fast, in that its
worst-case or average-case complexity is reasonably low, and (b) accurate, in that the value of the solution
it finds is not far from the value of an optimum solution. In this paper we seek to quantify the trade-off
between these two aims, and investigate some situations in which this can be done.

Consider graph colouring, as a motivating example. If we were in the extreme position of having no
time to even look at the input graph, and knew only that it had n vertices, and were required to supply a
proper (vertex-)colouring, then we would have to give a different colour to each vertex, using n colours
in all (the universal colouring). If we had a more sensible algorithm, then it would generally use fewer
colours. If it uses λ colours, then its colour gain is n−λ, since this is the number of colours the algorithm
saves, in comparison with the “knee-jerk response” of just using n colours without looking at the details
of the input graph. This gain has come at the cost of taking more time. The quotient

colour gain
extra time taken

(1)
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tells us how much is gained, on average, per extra time step (i.e., for each time step beyond the time
required to produce the universal colouring). For example, consider an algorithm A1 that takes time
4n and uses n/4 colours, and an algorithm A2 that takes time 5n and uses n/5 colours. Assume that
producing the universal colouring takes time n. Then the colour gain per extra time step for A1 is (n −
n/4)/(4n − n) = 1/4, while for A2 it is (n − n/5)/(5n − n) = 1/5. The quotient (1) can be thought
of as measuring the cost-effectiveness of the algorithm for the input in question, so in our simple example
A1 is more cost-effective than A2. We will see in the next section that these ideas are easily extended to
other optimisation problems.

We focus on situations where a long sequence of separate inputs must be solved, so that, when one
input is finished with, work starts immediately on the next. We also assume that the overall value of the
sequence of solutions obtained is just the sum of the values of the individual solutions. In such cases,
we argue that the cost-effectiveness measures we discuss may be useful in deciding whether to use (for
example) a fast but not particularly accurate algorithm or a slower near-optimal one.

Our measures should not be used to claim that one such algorithm is always better than another. The
choice of algorithm will depend on the economics of the situations in which the algorithm is to be used,
which can be complex and varied. They do, however, give a basis for such choice in some simple and
natural situations.

Our emphasis is on the analysis of algorithms, from the perspective of cost-effectiveness, rather than
the design of new algorithms. We find that cost-effectiveness can bring a new perspective to the analysis
of algorithms, and that simple, well-known algorithms are sometimes provably more cost-effective in
our sense than more sophisticated ones. This happens at greatly differing levels of complexity. We
illustrate this point with graph matching (solvable in polynomial time), graph colouring (NP-hard), and
then study Kolmogorov complexity (which is uncomputable [7, 21]). For the latter, we consider the
cost-effectiveness of time-bounded Kolmogorov complexity, as an approximation, and show that, under
reasonable assumptions, it cannot be cost-effective unless the time bound is O(n2).

Historically, the most common ways of measuring the quality of solutions returned by an approximation
algorithm A for an optimisation problem have been: the absolute error, i.e., the difference fA − f∗ (or
f∗−fA) between the value f∗ of an optimal solution and the value fA of one found byA; the ratio f∗/fA
(or fA/f∗) of these values; or the relative error (fA − f∗)/f∗ (or (f∗ − fA)/f∗). A number of authors
have proposed dividing the error by the difference between values of worst (f0) and best (f∗) solutions,
using (fA−f∗)/(f0−f∗), or, essentially equivalently, replacing the numerator here by the gain given by
A over the worst solution, using (f0 − fA)/(f0 − f∗): see, e.g., [1, 2, 3, 5, 8, 10, 11, 14, 27]. The former
ratio here is called the proximity degree in [5], and is part of the definition of a z-approximation in [14];
the latter is called a differential approximation ratio in [11, 10]. Hassin and Khuller [14, §1] give a good
survey of work on these and related measures. As shown in [3, 27, 11], they are invariant under certain
natural transformations of the problem (affine transformations in [11]). It is found, for example, that the
quality of approximations for finding maximum independent sets and minimum vertex covers in graphs
are the same under this measure, since these problems are equivalent under the transformations considered
(see the discussion in [11, §1, §3.2.1]). Some of the papers prove results about the class of measures that
possess such invariance properties [27, 11]. Some propose using some reference value appropriate to the
problem at hand rather than necessarily using the worst value [3, 8, 27], and we find this convenient too:
for some problems, it is difficult to find the very worst solution, whereas it may be easier to find some
other feasible solution.

Returning to our motivating example, there has been a series of papers on algorithms for approximate
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graph colouring with respect to these measures [9, 12, 13, 15, 26].
While the papers cited in the previous two paragraphs do take account of the gain over the worst (or

reference) solution (as we do), it is not their aim to look at the trade-off between solution quality and time.
A qualitative discussion of aspects of this trade-off can be found in [17, §7.2].
There is a loose analogy between the setting we consider and that of online algorithms (see, e.g., [18]).

There, elementary pieces of the input arrive in a sequence, and must be processed without knowing the
whole input. The outcome is compared with that of a normal (offline) algorithm which can wait for
the entire input and then process it, and so has perfect information about it. Our setting for the study
of cost-effectiveness has coarser granularity, in that it considers sequences of whole inputs rather than
pieces of inputs. We also use simple (often trivial) heuristics as benchmarks, against which performance
is compared, rather than the optimal offline algorithms used for competitive analysis of online algorithms.

In the next section, we develop cost-effectiveness measures in detail. We show how to measure the cost-
effectiveness of dealing with single inputs, and introduce average-case and worst-case cost-effectiveness
measures. In subsequent sections, we show how these ideas may be applied to discrete optimisation prob-
lems at different levels of complexity: maximum matching (§3), graph colouring (§3), and Kolmogorov
complexity (§4).

2 Measuring cost-effectiveness
Let Π = (I, sol,m, goal) be an optimisation problem, where we use the notation of [19, 4]: I is the
set of allowed inputs (i.e., instances), sol is a function that assigns a set of feasible solutions sol(x) to
any x ∈ I , m is the objective function (assigning a value m(x, y) to any x ∈ I and y ∈ sol(x)), and
goal ∈ {min,max} indicates whether the aim is to minimise or maximise m(x, y) over y ∈ sol(x). We
focus on minimisation problems; it is trivial to modify our treatment to deal with maximisation problems,
and we frequently do so parenthetically. Note that we do not require that Π belongs to the class NPO
(for which see, e.g., [4]), although most cases of practical interest are in that class. For convenience, put
In = {x ∈ I | |x| = n}.

A search algorithm for Π takes x ∈ I as input and outputs some y ∈ sol(x), with m(x, y) hopefully
not too far from optimum. An evaluation algorithm takes x ∈ I and outputs some bound (upper for min,
lower for max) for the optimal m(x, y), without necessarily exhibiting any y. We overload terminology
slightly by speaking of the value returned by a search or evaluation algorithm, even though the search
algorithm outputs a solution rather than its value. For a search algorithm, the value returned is m(x, y);
for an evaluation algorithm, the value returned is just the bound that it outputs.

We assume that the objective function is affinely related to the real value (or cost) of solutions, and that
this value/cost is additive over sequences of inputs.

Suppose we have two approximation algorithms A1 and A2 for Π. Our discussion will mostly allow
them to either both be search algorithms, or both be evaluation algorithms.

We wish to compare these algorithms with respect to their cost-effectiveness, using some measure that
depends only on the time taken and the value returned. To facilitate such comparison, let x1, . . . , xN ∈ In
be a sequence of n-bit inputs with the property that, for each of them, A1 takes time t1 and returns value
f1, and A2 takes time t2 and returns value f2. Suppose without loss of generality that t1 < t2. We restrict
our attention to t1 = Ω(n), t2 = Ω(n).

We want to compare the quality of solutions obtained when the algorithms use the same total running
time. Let T be the total time taken by A1 on all these N inputs. In this time, it is not possible for the
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slower A2 to process as many inputs as A1. So there comes a point when A2 must be abandoned, and
the leftover inputs (i.e., those which A1 had the time to process, but A2 did not) must be accounted for
somehow, with respect to both solution value and time. We suppose that each leftover input is deemed to
cost t0 time steps and is assigned a value of f0.

There are several different approaches to dealing with leftover inputs, including:

(a) Leftover inputs are processed by some algorithm A0 that is faster than either A1 or A2. This seems
especially appropriate when some trivial solution can be found in a short time.

(b) Leftover inputs are assigned the worst possible solution value for inputs of size n: for minimisation
problems, f0 = max{m(x, y) | x ∈ In, y ∈ sol(x)}. (For maximisation problems, replace max
here by min.) The time taken, t0, is just the time taken to find this worst possible value. The
rationale here is that, if A2 runs out of time to process the leftover inputs itself, then it cannot be
credited with finding anything better than worst possible solutions for the remaining inputs. For
many problems, a worst solution can be found easily. For others, finding a worst solution may be
difficult — perhaps as hard, or harder, than finding a best solution (e.g., the Travelling Salesman
Problem). In such cases, this method of dealing with leftover inputs may not be appropriate.

(c) Suppose there is a set Un of “universal” solutions that belong to the solution set of every possible
input of size n: Un =

⋂
x∈In sol(x). Leftover inputs are assigned the objective function value of

some universal solution of size n: f0 = m(x, y) where y ∈ Un. (In graph colouring, the colouring
that assigns a different colour to each vertex is such a universal solution.) We are, in effect, saying
that a universal solution can be proposed at negligible cost, without knowing any details of the input
except its size, so it is reasonable to use it if there is no time to do any actual computation on the
input. In many cases, approaches (b) and (c) amount to the same thing, as in the graph colouring
example discussed earlier. The time t0 is just the time taken to find such a universal solution.
(Typically t0 = O(n).)

(d) In (b) and (c), we used the same solution value (worst-case or universal, respectively) for all leftover
inputs. In accounting for time, we assumed in effect that this solution value was found from scratch
for each leftover input. It might be better to assume that such solution values cost us only constant
time. The rationale here is that, once such a solution is found, we could just refer to it briefly for
each remaining leftover input, rather than keep constructing it from scratch each time. So leftover
inputs can be processed in the time it takes to issue a directive along the lines of “use universal
solution value”. (We need here to assume a setting that allows such a directive to be constructed
and understood.)

(e) Sometimes it might be appropriate to assume that leftover inputs are not entitled to proper process-
ing, and so must be assigned a value f0 that is strictly worse than any solution for any x ∈ In. This
value will be greater than (or less than, for a max problem) the value of any worst-case value such
as that used in (b) above. The chosen f0 should be easy to compute, even if the value of the worst
solution is not. In this approach, it is reasonable to make t0 constant. It might help to envisage
augmenting the set of all possible solutions by a special symbol that indicates that there was not
enough time to find a valid solution, and giving this special ‘solution’ the value f0.

(f) In (e), it might be appropriate to give leftover inputs time t0 = 0. This can lead to a simpler
treatment, but may run into problems. In principle, it allows arbitrarily many inputs to be given
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some kind of solution value (even if a bad one, as a penalty) in zero total time, which does not seem
computationally realistic.

For the reasons given in (f), we assume t0 ≥ 1 unless stated otherwise. The exact forms of the penalties
envisaged in (e)–(f) depend on the particular problem, and on the use to which the solutions are to be
put. For the time being, we suppose that each xi ∈ In in our sequence of inputs gives the same leftover
solution value f0 = f0(xi).

The combined solution value found by an algorithm A for the sequence of inputs x1, . . . , xN ∈ I is
defined to be just the sum of the solution values found by A for the individual inputs in the sequence:
f(x1, . . . , xN ) :=

∑N
i=1 f(xi), where the latter f(x) is unary and denotes the solution value found by A

for input x, while the former f is N -ary. (The inputs in the sequence may be given, or random, or chosen
by an adversary, according to context.) In many cases, the inputs x1, . . . , xN can be combined to form a
single larger input

∑N
i=1 xi, to the same problem Π, whose value under f is the sum of the values under

f of the individual inputs. Typically, sol(
∑N
i=1 xi) =

∑N
i=1 sol(xi) and m(

∑N
i=1 xi, (y1, . . . , yN )) =∑N

i=1m(xi, yi), with the optimum solution f∗ obeying f∗(
∑N
i=1 xi) =

∑N
i=1 f

∗(xi). For example, if
G1, . . . , GN are graphs (regarded as inputs to the graph colouring problem), then the sum G1 + · · ·+GN
is obtained by taking disjoint copies of the Gi and adding all possible edges between Gi and Gj for each
i, j (1 ≤ i < j ≤ N ). Here, G1 + · · ·+GN is itself a graph (and so an input to the original problem in its
own right), and not just anN -tuple or formal sum. Observe that χ(G1+ · · ·+GN ) =

∑N
i=1 χ(Gi), where

χ denotes chromatic number.) In such cases, our use of addition to combine solution values is especially
well motivated.

While this will not cover all combination methods that are useful in practice, it is simple and natural.
Also, some combination methods can be put in this form by an appropriate transformation of values. For
example, if the solution values for some particular problem are regarded as probabilities that should really
be multiplied rather than added (with inputs assumed to be independent in an appropriate sense), then we
can work with their logarithms and so make them fit into our framework. We do not propose to cover all
possible combination methods in full generality, but focus on addition.

Suppose A2 deals with r inputs, leaving s leftover inputs, and A1 deals with r + s inputs. The time
taken by A2 is rt2 + st0, and the time taken by A1 is (r + s)t1. These must both equal T , which implies

r =
T

t1
· t1 − t0
t2 − t0

,

s =
T

t1
· t2 − t1
t2 − t0

.

Under our measures, the combined solution values F1 and F2 obtained by A1 and A2 respectively are

F1 = (r + s)f1,

F2 = rf2 + sf0.

We can use F1 and F2 to compare the performance of the two algorithms, given the same sequence of
inputs and the same total computation time. Algorithm A1 is to be preferred if and only if F1 < F2.
Making the above substitutions for r and s, we see that this occurs if and only if

t1 − t0
t2 − t0

· f2 +
t2 − t1
t2 − t0

· f0 > f1 , (2)
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i.e., in a plot of solution value versus time, (t1, f1) lies below the line joining (t0, f0) and (t2, f2). This
condition (2) holds if and only if

f0 − f1
t1 − t0

>
f0 − f2
t2 − t0

, (3)

which gives each algorithm its own side of the inequality. (The inequalities for this paragraph are reversed
for a max problem.)

We therefore propose the following simple measure of cost-effectiveness of an algorithm A when run-
ning on input x for which it takes time t = t(x) and produces solutions of value f = f(x):

ce(A;x) =
f0 − f
t− t0

, (4)

where (as above) t0 and f0 are the time taken and value assigned to leftover inputs. (For a max problem,
we negate the expressions for the cost-effectiveness functions ce( ) and ce1( ). We meet the latter below.)
Note that, if for some reason the differences f0 − f∗ and f − f∗ from the optimum value f∗ are more
readily available than the values f0 and f themselves, then it may be convenient to use

ce(A;x) =
(f0 − f∗)− (f − f∗)

t− t0
.

We emphasise that our cost-effectiveness measure must always be based on some assumed way of
accounting for leftover inputs, with associated t0 and f0, such as outlined in (a)–(f) above, and that t0
must be less than the time t taken by A. (If t0 � t then the approximation ce(A;x) ' (f0− f)/t may be
convenient.) If leftover inputs are dealt with by approach (a), then we are essentially measuring the cost-
effectiveness of algorithmA relative to a faster algorithmA0. This raises the possibility of then measuring
the cost-effectiveness of A0 relative to some even faster algorithm, and so on. We eventually face the
question of whether it is reasonable to nominate some ultimate basis against which cost-effectiveness can
be measured, or equivalently some way of accounting for leftover inputs that uses the least possible time.
Sometimes (e) above might provide this. However, it may not always be suitable. In practice, if A is to
be applied to a sequence of inputs but there is not enough time to apply it to them all, then it may well be
advantageous to use some faster but nontrivial algorithm for some of the later inputs, rather than just push
A to the bitter end and leave the leftover inputs to be dealt with in some trivial fashion. The choice of how
to deal with leftovers, and of t0 and f0, depends on the situation in which the algorithm is being used.

Now consider the cost-effectiveness of dealing with the whole sequence of inputs x = (x1, . . . , xN ).
Treating the whole sequence like a single large input, it is natural to extend (4) as follows:

ce(A;x) =
f0(x)− f(x)

t(x)− t0(x)
. (5)

Assuming additive combination of solution values as discussed above, we have

ce(A;x) =

∑
i f0(xi)−

∑
i f(xi)∑

i t(xi)−
∑
i t0(xi)

. (6)

Suppose the successive xi are drawn independently from the same probability distribution Pn on In. For
any g ∈ {f0, f, t0, t}, write g = g(n) for the expectation of g(x) over x ∈ In, according to Pn. Taking the
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limit of (6) as N → ∞ yields the following measure of average-case cost-effectiveness for an algorithm
A and input size n:

ce1(A;Pn;n) =
f0(n)− f(n)

t(n)− t0(n)
. (7)

It is worth noting that, if f (max)(n) = maxx∈In f(x) and t(max)(n) = maxx∈In t(x) are the worst-case
solution value and time, respectively, for A on inputs of size n, then

ce1(A;P ;n) ≥ f0(n)− f (max)(n)

t(max)(n)− t0(n)
.

(For a max problem, this lower bound must be modified: replace f (max) by f (min) and negate the resulting
quotient.)

It is also possible to define an appropriate measure of worst-case cost-effectiveness. The starting point
is again (4), but now the input x ∈ In is supposed to be chosen by an adversary. This may suggest the
measure

min
x∈In

f0(x)− f(x)

t(x)− t0(x)
.

However, this is just 0 if there exists x ∈ In such that f0(x) = f(x), as might often occur (for example,
in graph colouring, when x is a complete graph). When it does happen, it may be because algorithm A
performs badly on that x, in which case it may be reasonable enough for cost-effectiveness to be zero.
However, in some cases (such as our complete graph example) the input itself is so unfavourable that
there simply does not exist a solution value better than f0(x). In such cases it seems unfair to set the
cost-effectiveness to be zero. One way out is to scale the cost-effectiveness by the difference between
f0(x) and the optimal solution value f∗(x). Instead of measuring gain in solution quality per unit of time
spent (above leftover time), we measure the proportionate gain, compared with the gain for an optimal
solution, per unit time. The case f0(x) = f∗(x) still requires special treatment, but continuity now serves
as a guide. We obtain

ce2(A;n) = min

{
f0(x)− f(x)

f0(x)− f∗(x)
· 1

t(x)− t0(x)
| x ∈ In , f0(x) 6= f∗(x)

}
∪
{

1

t(x)− t0(x)
| x ∈ In , f0(x) = f∗(x)

}
(8)

Note that (8) is written so as to highlight the presence here (as the first of the two quotients on the right
hand side) of a close relative of the z-approximation measure of Zemel [14, 27]. Indeed, if t and t0 depend
only on |x|, then (for a given A) we just want to minimise that measure.

It is tempting to introduce the measure

ce3(A;n) = min
x∈In

f0(x)− f(x)

f0(x)− f∗(x)
· t
∗(x)− t0(x)

t(x)− t0(x)
(9)

= min
x∈In

ce(A;x)

ce(A∗;x)
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where t∗(x) is the time taken to find the optimal solution using some optimal algorithm A∗. This has the
advantage that it is unchanged by affine transformations on our measure of time. It has the disadvantage
of dependence on choice of A∗.

Alternatives to ce2, which avoid all mention of finding optimal solutions, may be to replace f∗ by either
(i) some more efficiently computable lower bound g for f∗ (so we would need to consider the choice of g,
and how to account for the time taken to compute it), or (ii) some approximation f (t) ≥ f∗ computable in
some specified time bound t(n) (which may give a sort of time-bounded differential approximation ratio).
We do not pursue any of these alternatives here, but rather focus on ce2( ) as our worst-case measure.

In situations where the leftover quantities f0 and t0 depend only on n, not on x itself, it can be useful
to observe that

ce2(A;n) ≥ f0(n)− f (max)(n)

f0(n)− f∗(n)
· 1

t(max)(n)− t0(n)
, (10)

where f∗(n) = minx∈In f
∗(x). This lower bound on worst-case cost-effectiveness might be a good

approximation to it, if inputs for which poor solution values are found tend to be those that take a long
time to deal with, but this will certainly not always be the case. The quantities f (max)(n) and t(max)(n)
are often readily found, perhaps from a published analysis of the algorithm in question, so (10) may give
a convenient back-of-envelope bound for worst-case cost-effectiveness.

For max problems, the definitions of the worst-case cost-effectiveness measures ce2( ) and ce3( ) are
unchanged (although, for the lower bound (10), f (max) must be replaced by f (min)).

Not surprisingly, worst-case cost-effectiveness appears to be easier to work with than the average-
case measure. This is analogous to the situation for ordinary time complexity: worst-case complexity is
easier to work with than average-case complexity, and is more widely studied, partly for this reason, even
though average-case complexity is often a better measure of the real cost in time. The next two sections
use worst-case cost-effectiveness. The final section, §4, uses the single-input measure ce(A;x).

3 Graph problems
The numbers of vertices and edges in a graphG are denoted by n andm respectively, andm is the number
of edges in the complement G of G.

The problem of finding a maximum matching in a graph G is well known to be solvable in polynomial
time (see [22]). The best time complexity bound known is O(m

√
n) for the algorithms of Hopcroft

and Karp [16], for bipartite graphs, and Micali and Vazirani [24], for general graphs. To assess cost-
effectiveness of matching algorithms, we put f0(n) = 0 (assuming, in effect, that leftover inputs are given
the null matching ∅, as a universal solution) and assume t/t0 = Ω(t) for any running time t = t(n)
of any of the algorithms we shall consider. The worst-case cost-effectiveness of the Hopcroft-Karp and
Micali-Vazirani algorithms is then seen to satisfy

ce2(A∗;n) = O((m
√
n)−1),

where A∗ is either of these algorithms.
Consider now any simple linear-time algorithm A for finding a maximal matching in a graph. It is easy

to show that a maximal matching must be at least half the size of a maximum one. From this we have the
following.

Theorem 1 The worst-case cost-effectiveness of A is Ω(m−1). 2
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This gives an example of a problem for which an optimal polynomial time algorithm exists but for
which a faster suboptimal algorithm is provably more cost-effective.

The chromatic number χ(G) of a graph G is known to be NP-hard to determine, and difficult even to
approximate (see [4, pp. 371–372]). A number of authors have considered the complementary problem
of maximising n − χ(G), which gives the number of colours that are unused when compared with the
universal colouring [9, 12, 13, 15, 26]. This turns out to be easier to approximate. The cited authors give
algorithms for which they establish lower bounds on the ratio (n − f(G))/(n − χ(G)) of: 1/2 [9, 15],
2/3 [15], 5/7 [12], 3/4 [13, 26]. Here, f(G) is the number of colours actually used by the algorithm in
question.

To study the cost-effectiveness of graph colouring algorithms, we assume that the leftover strategy is
to use universal colourings, so that f0(n) = n. Assume again that t0 is small enough that t/t0 = Ω(t),
where t is as usual the running time of the algorithm under consideration. For a given colouring algorithm
A, we wish to determine or estimate ce2(A;n), where now In is the set of graphs on n vertices. To do
this, we must minimise (over G ∈ In) the product of the above ratio (n − f(G))/(n − χ(G)) and the
reciprocal of t− t0: see (8).

Hassin and Lahav [15, Algorithm 1] begin by proposing the following simple algorithm, which we
call HL1: given G, find a maximal matching in G, and each pair of vertices so matched in G becomes a
colour class (of size 2) in G, and all the unmatched vertices become singleton colour classes. (We assume
that the maximal matching is found in the obvious greedy sequential manner.) HL1 is shown to achieve
performance ratio 1/2, the same as had been proved for a more complex relative in [9, Theorem 1], and
to have time complexity linear in m. We now consider its cost-effectiveness.

Theorem 2 For suitable representations of the input graph, ce2(HL1;n) = Θ(m−1).

Proof: Suppose the input graph G is represented in such a way that the edges in G are easily extracted. A
data structure that contains an adjacency list representation of G would suffice. For such representations,
we have t− t0 ≤ cm (for an appropriate constant c). Also, (n− f(G))/(n− χ(G)) ≥ 1/2, as shown in
[15]. Hence

ce2(HL1;n) = min
G∈In

n− f(G)

n− χ(G)
· 1

t(G)− t0

≥ min
G∈In

n− f(G)

n− χ(G)
· min
G∈In

1

t(G)− t0

≥ 1

2
· 1

cm
.

We now turn to the upper bound. Consider the null graph Kn. If HL1 is run on Kn, the maximum
matching found in its complement Kn has bn/2c edges, and the time taken to find it is c′m, where c′ is a
constant independent of n and m = |E(Kn)|. The colouring thus found by HL1 has dn/2e colours, and
the ratio (n− f(G))/(n− χ(G)) = 1/2 + o(n−1). Hence

ce2(HL1;n) ≤ n− f(Gk)

n− χ(Gk)
· 1

t(Gk)− t0

≤ 1

2c′′m



210 Graham Farr

for an appropriate constant c′′. The result follows. 2

For some other kinds of representation ofG (e.g., an adjacency list representation ofG only), we would
have ce2(HL1;n) = Θ(m−1).

The running time of Hassin and Lahav’s main algorithm [15, Algorithm 3] is given as O(nm), and
inputs where this bound is attained can be used to establish an upper bound on cost-effectiveness of
O((nm)−1). Those authors offer an improvement to speed up their algorithm. While that improvement
does not lower their worst-case complexity bound, it is possible that further improvements may do so, and
so lead to improved worst-case cost-effectiveness.

Halldórsson’s algorithm [13] runs in time O(n3). Input graphs that take this long for the algorithm to
colour can be used to give an upper bound O(n−3) on the algorithm’s cost-efffectiveness.

Tzeng and King’s algorithm [26] includes a step that finds a maximum matching in G. It is neces-
sary that the matching found be maximum rather than merely maximal, so with a best known matching
algorithm, and sufficiently “slow” inputs, the cost-effectiveness is O((m

√
n)−1).

All the algorithms discussed in this section were designed specifically to make the ratio (n−f(G))/(n−
χ(G)) as large as possible. It is interesting to consider the cost-effectiveness of colouring algorithms
developed without this specific objective in mind. Consider the classical sequential colouring heuristic
[23]: look at the vertices in order, and give each vertex the smallest colour not used by any of its already-
coloured neighbours. This takes time O(m).

Theorem 3 The sequential colouring heuristic satisfies (n − f(G))/(n − χ(G)) ≥ 1/2 and has worst-
case cost-effectiveness Ω(m−1).

Proof: Suppose the heuristic is applied to a graph G, and that it uses f(G) = k colours on G. If
k ≤ n/2, then (n− f(G))/(n− χ(G)) ≥ (n− n/2)/(n− 0) = 1/2. If k ≥ n/2, then there are at least
k− (n−k) = 2k−n colours that are each only assigned to a single vertex. Let the set of these singleton-
colour-class vertices be U . These vertices must form a clique in G, since otherwise the algorithm would
not have given them all different colours. (In particular, if u, v ∈ U with uv 6∈ E(G) and (without loss of
generality) u < v in the vertex ordering, then v could have been given the same colour as u.) HenceG has
a (2k−n)-clique, and χ(G) ≥ 2k−n. Hence (n−f(G))/(n−χ(G)) ≥ (n−k)/(n− (2k−n)) = 1/2.
This proves the first claim of the theorem.

It is straightforward to find graphs for which the algorithm takes time Θ(m). The bound on cost-
effectiveness follows. 2

For cost-effective graph colouring, it looks like a good approach might be to use sequential colouring
for graphs with fewer edges than their complement and HL1 for (appropriately represented) graphs with
more edges than their complement.

It will be seen from this and the previous section that, for cost-effectiveness, it is generally better to
have a fast algorithm with some constant differential approximation ratio than a slower one with a better
(or even optimum) ratio. Indeed, in graph colouring we have seen that simple sequential algorithms can
be the most cost-effective, even though their performance guarantees are among the weakest. It would be
interesting to investigate how widespread this phenomenon is.
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4 Kolmogorov complexity
Suppose we have a string x and we wish to find a short description of x, in the form of a program p that,
when given to some fixed universal Turing machineU , causesU to output x = U(p) and stop. (We assume
that the set of legal programs forms a prefix code.) The length of a shortest such p is the Kolmogorov
complexityK(x) of x. For further information, see [21]. K(x) is well known to be uncomputable: see [7]
or [21, Theorem 2.6]. Some of the interest in Kolmogorov complexity comes from inductive inference,
where x is regarded as data of some kind and p is regarded as a model, or explanation, for x. In such cases
it can be of considerable practical importance to find short strings p that generate x in the above manner.
Since finding a shortest such p is uncomputable, we must settle for approximations.

In this section we discuss cost-effective approximation of K(x) (the evaluation problem) and of the
associated search problem of finding p. We also consider cost-effectiveness in relation to the generation
of x from p.

Since we cannot compute K(x) in general — when there is no limit on the time we must allow a
program p to take to generate a string x — it is natural to put some limit τ(n) on the time taken by p
when |x| = n. The length of the shortest p that generates x under this time restriction is the time-bounded
Kolmogorov complexity Kτ(n)(x) [21, §7.1]. We restrict our attention to computable τ , so that Kτ(n)(x)
is computable, and provides a computable upper bound on K(x). The higher we allow τ(n) to be, the
better will be our approximation to K(x). We ask: what time limit τ(n) is most cost-effective? We
consider this for the search, evaluation, and generation problems in turn.

To answer this question, we will apply our cost-effectiveness measure ce(A;x) to time-bounded Kol-
mogorov complexity. To do so, we need as always to settle on t0 and f0. In this section, we suppose that
the values returned are at least as large as the maximum possible (see options (d), (e)). We also suppose
that our f0(x) depends only on n, so we may put f0(n) = f0(x).

Recall that the maximum possible value of K(x), over strings x of length n, is n+K(n) +O(1), and
that no computable upper bound to this value is always within an additive constant of it. We therefore
suppose that f0(n) is some easily computable strict upper bound: f0(n) > max{K(x) | |x| = n}. (For
example, we could take f0(n) = n+ 2 log n+ c, for some suitable constant c.)

We will argue below that the following measure of cost-effectiveness is appropriate:

κ(n, x, τ) =
f0(n)−Kτ(n)(x)

τ(n)− τ0(n)
,

where we will usually want τ0(n) = O(f0(n)) but postpone further consideration of τ0 for the moment.
The similarity of the measure κ(n, x, τ) to those introduced in §2 will be evident. The main difference is
that the denominator here uses the resource-bounded Kolmogorov complexity’s time bound τ(n), rather
than the actual time taken to compute Kτ(n).

We will need to use a standard program for generating a string x, along the lines of “print x, then stop”
(appropriately formulated in the prefix code recognised by the universal Turing machine in question): call
this program p0(x). We can assume that the map x 7→ p0(x) is computable. This implies |p0(x)| >
n+K(n) + c, for some constant c.

4.1 The search problem
For the search problem, each leftover string x will be processed by a simple algorithm that takes x as
input and outputs the program p0(x). Let t0(n) be the time complexity of this algorithm. It is reasonable
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to insist that t0(n) ≤ af0(n) for some a.
Let A(τ) be the following basic search algorithm for computing Kτ(n)(x). A string x is given as input,

with n = |x|. Take all programs p of length < f0(n) and run them in parallel (or, at least, simulate their
parallel execution). Each p is stopped after τ(n) steps, if it has not already done so. Of those programs
that have halted naturally (i.e., without being forced to do so), we find a shortest one that produced output
x. Call it pτ . The length of this program is Kτ(n)(x).

We assume that the total time taken by A(τ) can be measured (to sufficient accuracy for this exercise)
by t(n) = α2f0(n)τ(n), for some α independent of n. Certainly α = 1 would give an easy upper bound,
and it is routine to show that α = Ω gives a lower bound, where Ω is the probability that U eventually
halts when given a random program p [6].

Following §2, it is natural to measure the cost-effectiveness of this algorithm by

κ′(n, x, τ) =
f0(n)−Kτ(n)(x)

t(n)− t0(n)
.

For leftover inputs, it is natural to use the trivial search algorithm that just outputs p0(x), described at the
start of this section. Hence we have

κ′(n, x, τ) =
1

α2f0(n)
·

f0(n)−Kτ(n)(x)

τ(n)− t0(n)(α2f0(n))−1
,

The above expression differs from the measure κ(n, x, τ) only by (i) a factor of α2f0(n), which is inde-
pendent of x, τ(n) and Kτ(n)(x), and (ii) our explicit choice of τ0(n) = t0(n)(α2f0(n))−1. So the most
cost-effective approximation to K(x), among those obtained by computing Kτ(n)(x) using A(τ), is the
one obtained by choosing τ to maximise κ′(n, x, τ); it will also maximise κ(n, x, τ) with appropriate τ0
(and in any case the exact choice of τ0 is unimportant if it is small). This justifies using κ(n, x, τ) as a
cost-effectiveness measure, provided we recognise that it is not measured in quite the same units as the
measures proposed in §2.

Other search algorithms are possible, of course, and may suggest different cost-effectiveness measures.
Consider, for example, the universal search algorithm of Levin [20] (see also [21, §7.4.1]). If a program p
outputs x in τ steps, then the Levin search algorithm finds p in 2|p|+log τ+1 steps, with cost-effectiveness

f0(n)− |p|
2|p|+log τ+1

.

This is maximised by the p that minimises

|p|+ log τ − log(f0(n)− |p|). (11)

This expression (at its minimum) is similar to Levin’s

Kt(x) = min
p

(|p|+ log τ).

The final term in (11) may be viewed as modifying Levin’s Kt to take more careful account of cost-
effectiveness, but will have little effect unless |p| = O(log n).
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4.2 The evaluation problem
For the evaluation problem of just finding K(x), leftover strings are handled by just outputting f0(n)
(being a convenient upper bound for |p0(x)|) in an appropriate prefix code. Let τ0(n) be the time required
to deal with each leftover string in this way. If f0(n) = O(n) then this time is ≤ a log∗ n steps for some
constant a. (For the log∗ function, see [25].) We certainly have τ0(n) = O(log n). Since each leftover
input is given the same output in this case, we may find it appropriate, in the light of option (d) in §2, to
suppose that this “leftover output” is only stated explicitly once, and just represented by a special symbol
thereafter. We can then let τ0 be a constant.

Although the choice of τ0 is different, the argument of the previous subsection can be applied to the
evaluation problem as well as the search problem. Again, we claim that κ(n, x, τ) is an appropriate
cost-effectiveness measure.

4.3 Generating the target string
So far we have looked at the cost of finding short programs that output a string x (or their lengths). We
now consider the time these programs take, when run by U , to compute x. If a program p was found by
A(τ), then it might take up to τ(n) steps to compute x. The reduction in program length, compared with
the leftover length f0(n), is f0(n) −Kτ(n)(x). Leftover inputs x are assigned the programs p0(x), and
the time taken by such a program to output x is taken to be τ0(n) ≤ af0(n). If we divide this length
reduction by the time taken by p to compute x (with leftover time τ0 deducted) then we obtain a measure
of how cost-effective p is as a description of x. This measure is bounded below by κ(n, x, τ), and will
equal it (with our choice of τ0) if τ(n) is the actual time taken by p to generate x, rather than just an upper
bound.

Note that this is a different kind of cost-effectiveness to that considered earlier. Originally we con-
sidered the cost-effectiveness of finding a short program for x (or the length of such a program) by a
basic search algorithm. In the previous paragraph we considered the cost-effectiveness of generating
x by a short program. We have seen that the same measure κ(n, x, τ) can be used for both kinds of
cost-effectiveness.

4.4 Choice of time bound
We have argued that κ(n, x, τ) is an appropriate cost-effectiveness measure for approximations to Kol-
mogorov complexity. We now consider the issue of choice of τ(n).

We will show that, once τ(n) is large enough, cost-effectiveness cannot be optimum: specifically, it
will be less cost-effective than certain fairly small time bounds.

A time bound τ1(n) is standard if it satisfies each of the following:

(i) τ0(n) < τ1(n) for all sufficiently large n;

(ii) τ1(n) is a computable time bound at least large enough to allow the program p0(x) to run;

(iii) τ1(n) = O(f0(n));

(iv) f0(n)−Kτ1(x) ≥ c, for some positive constant c and all sufficiently large n.

The essence of these assumptions is that the time bound τ1(n) should be reasonably small but not so
small as to be useless, and that that the results it yields are better than the leftover values. We briefly



214 Graham Farr

discuss some of the assumptions in more detail. We need to ensure that the time bound τ1 is large enough
to allow x to be printed, hence (ii). We will only be interested in situations where Kτ1(x) is (for large
enough n) a strictly better approximation to K(x) than is the leftover value f0(n), hence (iv). One
situation in which (iv) is satisfied is when the leftover strategy is strictly worse than always using p0(x)
for leftover inputs, in the spirit of option (e) in §2. In such a case, τ1 could be just large enough to allow
p0(x) to run. This would give τ1(n) = O(|p0(x)|) = O(f0(n)), satisfying (iii).

We also assume:

(v) τ0(n) = O(f0(n)).

This should be satisfied by any reasonable leftover method.
It is routine to find a standard τ1(n) with τ0(n) = O(f0(n)). For example, suppose that f0(n) =

n+2 log n+ c, the program p0(x) runs in time≤ α1n where α1 ≥ 1, and τ0(n) = α2n for some α2 > 0.
Then we could use τ1(n) = α′n for some α′ > max{α1, α2}.

We are going to compare Kτ1(x) and Kτ2(x), as approximations to K(x), in cases where τ1(n) is
standard and τ2(n) = Ω(f0(n)2). (When f0(n) = Θ(n), this just means τ2(n) = Ω(n2).)

Theorem 4 Suppose τ1(n) is standard and τ0(n) = O(f0(n)). Then there exists a constant β such
that, if τ2(n) ≥ βf0(n)2 for all sufficiently large n, then (as approximations to K(x)) Kτ2(x) is less
cost-effective than Kτ1(x).

Proof: Let a, b be constants such that, for all sufficiently large n, τ1(n) ≤ af0(n) and τ0(n) ≤ bf0(n).
Let β > max{a/c, b} be a constant, where c is from (iv). Suppose that τ2(n) is a time bound such that

τ2(n) ≥ βf0(n)2 for all sufficiently large n.
We have, for sufficiently large n,

κ(n, x, τ2) =
f0(n)−Kτ2(x)

τ2 − τ0

≤ f0(n)

βf0(n)2 − bf0(n)

=
β−1

f0(n)− β−1b

<
β−1

f0(n)− 1
(since β > b)

=
β−1

f0(n)

f0(n)

f0(n)− 1

<
c

af0(n)
(since β > a/c, and with n large enough)

≤ f0(n)−Kτ1(x)

τ1 − τ0
(by (iv) and choice of a)

= κ(n, x, τ1).

2
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We might paraphrase the situation by saying that if a description p of a string x takes ω(f0(n)2) steps
to run, then it takes too long to be worth waiting for (or finding). Explanations that take a long time to
process may not be cost-effective.

On the positive side, it follows that (under our mild assumptions) we can always find a program p that
outputs x and maximises the cost-effectiveness: such p can be found by the following algorithm,Bβ . This
algorithm works exactly like A(τ) with τ(n) = βn2 except that, from among all programs p that halted
naturally and generated x, it chooses one that maximises the ratio

f0(n)− |p|
τp − τ0(n)

,

where τp is the time taken by p to generate x (with p being not necessarily the shortest program that does
so). This p maximises the cost-effectiveness of generating x, i.e., it is a most cost-effective explanation
of x.

Note, though, that we do not know in advance what the time τp taken by a cost-effective p is going to
be. We do know by Theorem 4 that τp ≤ βf0(n)2, which is whyBβ works. ButBβ itself is not in general
cost-effective. (Note that Bβ is just one way of finding such a p; it is not p itself, and the p so found may
run in time less than βn2.)

These observations contrast with the uncomputability of Kolmogorov complexity: although finding
shortest explanations is uncomputable, finding most cost-effective explanations is not.

5 Further work
We have only opened up this topic and given some initial results. Here we mention a few of the many
possible directions for future work.

Firstly, what are the most cost-effective algorithms for classical combinatorial optimisation problems?
After considering our main running example of graph colouring, we suggested using sequential colouring
or HL1 according to edge density. It would be worth looking at how to make this into a precise algorithm,
as cost-effectively as possible. What about other specific problems?

Secondly, some experimental investigation of these ideas would complement the work of this paper and
should help in setting further directions for theoretical enquiry.

Thirdly, one could try to prove more general results on cost-effectiveness that apply to whole classes
of problems rather than just to specific problems. Are there classes of problems where the problems
within a class exhibit similar behaviour, with respect to cost-effectiveness? Is there a useful notion of
reducibility between problems? (It is not clear that the kind of classification used in complexity theory for
decision problems, or optimisation problems, is necessarily going to be appropriate here.) What are the
characteristics of problems whose algorithms have lowest cost-effectiveness?

Fourthly, what about enumeration problems? How would we approximate, in a cost-effective way,
problems such as counting the colourings of a graph, or evaluating its Tutte polynomial at some fixed
argument? How cost-effective are Markov Chain Monte Carlo methods?

Lastly, there is certainly room for debate on how to formulate cost-effectiveness measures. This paper
presents some proposals and highlights some of the issues. Further discussion is welcome.
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