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Exact L?-Distance from the Limit for
QuickSort Key Comparisons (Extended
Abstract)

Patrick BindjemJand James Allen Fill

Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, MD 21218-2682 USA

Using a recursive approach, we obtain a simple exact expression for the L?-distance from the limit in the classical
limit theorem of Régnier (1989) for the number of key comparisons required by QuickSort. A previous study by
Fill and Janson (2002) using a similar approach found that the da-distance is of order between n ! log n and n~ Y2,
and another by Neininger and Ruschendorf (2002) found that the Zolotarev (3-distance is of exact order n™" log n.
Our expression reveals that the L?-distance is asymptotically equivalent to (2n~" In n)l/ 2,

Keywords: QuickSort; key comparisons; limit distribution; L>-distance

1 Introduction, review of related literature, and summary

We consider the QuickSort sorting algorithm of [Hoare|(1962) applied to an infinite stream of iid (inde-
pendent and identically distributed) uniform random variables Uy, Us, . ... QuickSort chooses the first
key U; as the “pivot”, compares each of the other keys to it, and then proceeds recursively to sort both the
keys smaller than the pivot and those larger than it. If, for example, the initial round of comparisons finds
Us < Uy, then U, is used as the pivot in the recursive call to the algorithm that sorts the keys smaller
than U; because it is the first element in the sequence Uy, Us, ... which is smaller than U;. In a natural
and obvious way, a realization (requiring infinite time) of the algorithm produces an infinite rooted binary
search tree which with probability one has the completeness property that each node has two child-nodes.

Essentially the same algorithm can of course be applied to the truncated sequence Uy, Us, ..., U, for
any finite n, where the recursion ends by declaring that a list of size 0 or 1 is already sorted. Let K,
denote the number of key comparisons required by QuickSort to sort Uy, Us, ..., U,. Then, with the
way we have set things up, all the random variables K, are defined on a common probability space, and
K, is nondecreasing in n. Indeed, K,, — K, is simply the cost of inserting U,, into the usual (finite)
binary search tree formed from Uy, ..., U,_1.

In this framework, |Régnier| (1989) used martingale techniques to establish the following LP-limit theo-
rem; she also proved almost sure convergence. We let

wn i=EK,.
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Theorem 1.1 (Régnier| (1989)) There exists a random variable T satisfying

Y im Kn ot 2t
n+1

for every finite p.

Rosler|(1991) characterized the distribution of Régnier’s limiting 7" as the unique fixed point of a certain
distributional transformation, but he also described explicitly how to construct a random variable having
the same distribution as 7". We will describe his explicit construction in equivalent terms, but first we need
two paragraphs of notation.

The nodes of the complete infinite binary search tree are labeled in the natural binary way: the root
gets an empty label written € here, the left (respectively, right) child is labeled O (resp., 1), the left child
of node 0 is labeled 00, etc. We write © := U0§k<oo{0, l}k for the set of all such labels. If Vj denotes
the key inserted at node § € O, let Ly (resp., Ry) denote the largest key smaller than Vp (resp., smallest
key larger than Vjy) inserted at any ancestor of 6, with the exceptions Ly := 0 and Ry := 1 if the specified
ancestor keys do not exist. Further, for each node 6, define

¢o = Ro — Lo, Up := ¢a0/ Do,
Go := p9C(Up) = do — 209 In dg + 2090 In pgo + 2¢91 In Po1, (LD

where for 0 < x < 1 we define
Cz):=142zInz+2(1 —z)In(1 — x). (1.2)

Let 1 < p < oo. The dy-metric is the metric on the space of all probability distributions with finite pth
absolute moment defined by

dp(F, Fy) = inf [ Xy — Xol,

where we take the infimum of LP-distances over all pairs of random variables X; and X5 (defined on the
same probability space) with respective marginal distributions F; and F5. By the d,-distance between
two random variables we mean the d,,-distance between their distributions.

We are now prepared to state Rosler’s main result. NOTE: Here and later results have been adjusted
slightly as necessary to utilize the same denominator n + 1 (rather than n) that Régnier used.

Theorem 1.2 (Rosler| (1991)) For any finite p, the infinite series Y = Z;io Zw\:j Gy converges in LP,
and the sequence Y,, = (K,, — j,)/(n + 1) converges in the d,-metric to Y .

Of course it follows from Theorems [I.THI.Z that 7" and Y have the same distribution. The purpose
of the present extended abstract is to show that in fact 7' = Y and to provide a simple explicit
expression for the L2-distance between Y,, and Y valid for every n; this is done in Theorembelow.

We are aware of only two previous studies of the rate of convergence of Y,, to Y, and both of those
concern certain distances between distributions rather than between random variables. The first study, by
Fill and Janson|(2002), provides upper and lower bounds on d,(Y;,,Y") for general p; we choose to focus
here on ds.
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Theorem 1.3 (Fill and Janson|(2002)) There is a constant ¢ > 0 such that for any n > 1 we have
en"tinn < do(Y,,Y) < on 12,

To our knowledge, the gap between the rates (logn)/n and n~'/2 has not been narrowed. Neininger and
Riischendorf|(2002) used the Zolotarev (3-metric and found that the correct rate in that metric is n~! log n,
but their techniques are not sufficiently sharp to obtain (3(Y;,,Y) ~ én~!Inn for some constant ¢.

In our main Theorem [I.4] proved using the same recursive approach as in [Fill and Janson| (2002), we
find not only the lead-order asymptotics for the L2-distance ||Y;, — Y||2, but in fact an exact expression
for general n. It is interesting to note that the rate n~/2(log n)*/? for L?-convergence is larger even than
the upper-bound rate of n~'/2 for dy-convergence from Theorem 1.3

Theorem 1.4 (main theorem) Forn > 0 we have

> 1 1
IV, =Y|2=(n+1)""! <2Hn+1+6> —4 Z k2=2-"10 () :
n+1 M n n

where H,, 1= Z?Zl j 1 is the nth harmonic number and the asymptotic expression holds as n — oo.

The remainder of this extended abstract is devoted to a proof of Theorem [I.4] which is completed in
Section

2 Preliminaries

In this section we provide recursive representations of Y, (for general n) and Y that will be useful in
proving Theorem[T.4] Our first proposition concerns the limit Y and gives a sample-pointwise extension
of the very well known [R&sler] (1991)] distributional identity satisfied by Y. Recall the notation (I.1)) and
the definition of Y" in Theorem 1.2]as the infinite series Y27 375 _; Go in L*.

Proposition 2.1 There exist random variables Fy and Hy for 8 € O such that
(i) the joint distributions of (G : 0 € ©), of (Fp : 0 € ©), and of (Hy : § € O) agree;
(i) (Fp:0 € O)and (Hy: 6 € ©) are independent;

(iii) the series
oo o0

y© .= Z Z Fy and YW .= Z Z Hy 2.1

J=06]=j J=010|=j
converge in L3;
(iv) the random variables YO and YD are independent, each with the same distribution as 'Y, and
Y =C0(W)+U0y® +TYyW. (2.2)

Here U := Uy, with U := 1 — Uy, and C'is defined at (I.2).
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Proof: Recall from (I.1)) that

Go = g — 209 In ¢g + 290 In Pgo + 2091 In g1 .

For 6 € O, define the random variable g (respectively, 1) by
Yo = ¢09/U (resp., 1/)9 = ¢19/U)

Then U and ¢y are independent (resp., U and 1) are independent), ¢y and 1 each have the same distri-
bution as ¢y, and -
Gog = UFQ and G19 = UH@,

where

Fo := o — 29 In g + 290 In oo + 2001 In o1,
Hy = 1pg — 2% In g + 2490 In g0 + 291 In 1.

The proposition follows easily from the clear equality
E(Fg296@):£(G9ZGE@):E(HQ:GEG),

of joint laws and the fact that

o0

Yy = ZZGG:G€+§:ZG09+§:ZG19

3=06]=j i=06]=j i=06]=j
oo . oo
= CU)+UY_ DY Fo+UY Y Hp
3=06]=j =0 |6|=j
= CWU)+UY© +TYWD,
O

We next proceed to provide an analogue [namely, (2.4)] of (2.2) for each Y,,, rather than Y, but first we
need a little more notation.
Given 0 < z < y < 1, let (U*Y),,>1 be the subsequence of (U,,),>1 that falls in (z,y). The random

variable K,,(z,y) is defined to be the (random) number of key comparisons used to sort Uy, ..., UZY
using QuickSort. The distribution of K, (z,y) of course does not depend on (x, ).
Let vp(n) denote the number of keys among Uy, ..., U, in the subtree rooted at §. We now define the

random variable

Yn,0 = [Kye(n) (L97 RG) - Mug(n)]/[ye(n) + 1]7 (23)

with the centering here motivated by the fact that 1, ,,) is the conditional expectation of K, (,,)(Lg, Ry)
given (vg(n), Ly, Rg). Then for n > 1 we have

n vo(n) +1 vi(n)+1
Y, = Cp 1 Y, Y1, 24
n+1 (vo(n) +1) + n+1 ot n+1 ! 24
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where, as in [Fill and Janson| (2004), for 1 < i < n we define
Cn(i) == %(n — 1+ pio1 + fln—i — fin)-

We note for future reference that the classical divide-and-conquer recurrence for i, asserts precisely that

> Cu(i)=0 (2.5)
=1

forn > 1.
It follows from (2.2) and (2.4) that for n > 1 we have

Y, -Y = [VO(HM Y, 0— Uy(o)] + {Vl(n)—i_l Y1 — Uy(l)}
n+1 ' n+ ’
n
1) —
+ {n+1cn(Vo(n)+ ) C(U)]
=Wy + Wy 4+ Ws. (2.6)

Conditionally given U and vy(n), the random variables W, and W5 are independent, each with vanishing
mean, and W3 is constant. Hence

E((Y, —Y)?|U,w(n)] = E[W} | U, vo(n)] + E[WS | U, vo(n)] + W3
and thus, taking expectations and using symmetry, for n > 1 we have
a2 =E(Y,-Y)?2=EW?+EW; +EW; =2EW? +EW3. 2.7

Note that

@} =EY?=0?:=7- 272 (2.8)

(for example, [Fill and Janson|(2004)).

3 Analysis of E W2

In this section we analyze E W2, producing the following result. Recall the definition of o2 at (2.8).
Proposition 3.1 Let n > 1. For W defined as at (2.6)), we have

wn

n—1 2
EW?= —— k+1)%a3 B —
Lo +1)2 1;)( + 1)+ 6(n+1)

For that, we first prove the following two lemmas.

Lemma 3.2 Foranyn > 1, we have

2
140 (n) +1 _ 1(0) 2
< n—+1 ) (Yn,O Y )

E

1"1(k+1>2 )
- 1 ak.
nk:o n —+
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Lemma 3.3 For any n > 1, we have
(n) +1 2 2
El|(PYY T (y(0)>
n+1

Proof of Lemma[3.2} There is a probabilistic copy Y* = (Y,¥) of the stochastic process (Y7,) such that

Yn70 = Y*

vo(n)

and Y* and Y'(©) are independent of (U, v(n)). This implies
vo(n) +1\7 2 vo(n) +1)° 2
o () vy = [(R) (1, - v
n+1 ' n+1 °
By conditioning on v (n), which is uniformly distributed on {0, ...,n — 1}, we get
vo(n) +1\7 2 vo(n) +1\?
n+1 ' n+1 °

ln—l k+1 2 )
= (i) @

=E

a

Proof of Lemma Conditionally given v9(n) and Y (9), we have that U is distributed as the order statis-
tic of rank v(n) + 1 from a sample of size n from the uniform(0, 1) distribution, namely, Beta(v(n) +
1,n—vp(n)), with expectation [vo(n)+1]/(n+1) and variance [(vo(n)+1)(n—vo(n))]/[(n+1)?(n+2)).
So, using also the independence of vy(n) and Y (), we find

s (o) )
vo(n n—1vp(n 5 | (o(n) +1)(n — vo(n))
=F {( 0<(73i11))2((n+20)( : (Y(O)ﬂ =0 E{ O(n:fy(mzo)

0_2 ln—l 0_2 1
ek Ekz:%(lﬁ—l)(n—k): e oo e (UGB N G R
0.2
T 6(n+1)
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Proof of Proposition 3.1} We have

- 2
EW2=E Vo(nij_';l Y0 — Uy(O)}
n
- 2
_E vo(n) +1 (YnO_Y(O)) N (Vo(n)+1 —U) Y(O)}
n+1 ’ n+1
I 2
vo(n) +1 )2
( n+1 ) (n,o )

2
+E (l/O(TlHl_U> (y(O))2

n+1

vo(n) +1 v (o) +1 (0)
+2E[ n+1 (Y"’O Y ) n+1 vpyel

The result follows from Lemmas 3.3] and the fact that, conditionally given (vo(n), Y;,0, Y (%)), the
random variable U is distributed Beta(vy(n) + 1,n — v9(n)), so that the last expectation in the preceding
equation vanishes. O

4 Analysis of E W2

In this section we analyze E W2, producing the following result.

Proposition 4.1 For any n > 1 we have

27 4(n+2 4
B =EW:="2 - P + ————H,,
" 3 35 T3\nyr) +3n(n+1)2

where H,, = 2?21 j~ Y is the nth harmonic number and H,(f) = Z;-L:l §~2 is the nth harmonic number
of the second order:

For that, we first prove the following two lemmas.

Lemma 4.2 Forany 1 < k < n we have

1 1
D(n, k) := ) /0 th=1(1 —t)"*(nt)dt = Hy_, — H,,

Bk,n—k+1
where B is the beta function.

Lemma 4.3 For anyn > 1 we have

n
n+1

E[C,.(vo(n) + 1HC(U)] = E[C, (vo(n) + 1)]2
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Proof of Lemma [d.2} The result can be proved for each fixed n > 1 by backwards induction on & and
integration by parts, but we give a simpler proof. Recall the defining expression

B(a,B) = /Olt“—l(l —t)ftat

for the beta function when «, 8 > 0. Differentiating with respect to « gives

/0 2711 — )P~ (Int) dt = B(a, B) () — v(a + B)],

where 1) is the classical digamma function, i.e., the logarithmic derivative of the gamma function. But
it is well known that +(j) = H;_; for positive integers j, so the lemma follows by setting v = k and
B=n—k+1. O

Proof of Lemma 4.3} We know that 19(n) + 1 ~ unif{1,2,...,n} and that, conditionally given vo(n),
the random variable U has the Beta(o(n) + 1, n — vp(n)) distribution. So from Lemma[4.2} repeated use
of (2:3), and the very well known and easily derived explicit expression

pn =2(n+ 1)H, — 4n, n >0,

we have

E[Cn(vo(n) + 1)C(U)]

_ ijzn;on(j)m /Oltjl(l IOt dt

- iécn(j)u + 2#(1@- — Hoir) + Q%Wnﬂ-ﬂ ~ Hyp))
_ @éCn(j)[ZjHj 20—+ 1) Hnji1]

- ﬁ f:cn(j)[zjﬂj,l —A4(j—1)+2(n—j+1)Huj — 4(n — j)]

j=1

n

_ Z:Cn(j)[um + pn—j] = m;c*n(j)[ujl + Hnej — ftn]

_ " lzcn(jf - nilE[Cn(Vo(n) +1)%

as desired. O
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Proof of Proposition It follows from Lemma[4.3] that

B =E {nz ~C(vo(n) +1) - C(U)} i

_ (n i 1)2 E[C,(vo(n) +1))* =2 (ni 1) E[C,(vo(n) + 1)C(U)] +EC(U)?

n
n+1

=EC(U)? - ( >2E [Chn(vo(n) 4+ 1)]2.

Knowing that E C(U)? = 52 /3, and from the proof of Lemma A.5 in|Fill and Janson| (2004) that

E[C.(o(n)+1)?=1(1+1)*—4(1+2)(1+2)HY - dn3H,,

o2—7 4 (n+2
b2 = - (T —
" 3 +3< ) " +3n(n+1)2

we have

Hy,

as claimed.

5 A closed form for a?
In this final section we complete the proof of Theorem[I.4] for which we need one more lemma.

Lemma 5.1 For H,(LQ) = 2?21 572, the nth harmonic number of the second order, we have
2
S H® = (n+1)HP - H,
j=1

for any nonnegative integer n.

The lemma is well known and easily proved.

Proof of main Theorem [1.4; For n > 1 we have from the decomposition (2.7) and Propositions
and [4.J] that

\V]

n—1
2 2 2
=— E k+1
n n(n +1)2 k*O( )

o? (n+2 7 4 (n+2 4
Z STl L /4 CO N ——
T3 <n+1) 3+3(n+1) n JrSn(n—&—l)2 ’

and we recall from (2.8)) that a2 = o2. Setting z,, := (n + 1)%a2, we have 29 = 02 and

2nfl
xn:EkZ_oxk—&—cn forn > 1,
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with
2

7 4 4
Cp = U—(n +2)(n+1)—=(n+1)2+-(n+2)(n+1)H® + —H,,.

3 3 3 3n
This is a standard divide-and-conquer recurrence relation for x,,, with solution
i kck - (k‘ - 1)Ck_1
n = 1 2 ) > 0
Tn=Mm+1)|o —I—kZ_:l ) n >
After straightforward computation involving the identity in Lemma5.1] one finds
a2 =m+1)" <2Hn+1+ >+02—7+4H,(f)
n+1
6 - 1 1
—(n+1)1<2Hn+1+ )4 > k2—2“"+0(>,
n+1 n n
k=n+1
as claimed. O
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