A New Binomial Recurrence Arising in a Graphical Compression Algorithm

Abstract : In a recently proposed graphical compression algorithm by Choi and Szpankowski (2009), the following tree arose in the course of the analysis. The root contains n balls that are consequently distributed between two subtrees according to a simple rule: In each step, all balls independently move down to the left subtree (say with probability $p$) or the right subtree (with probability 1-$p$). A new node is created as long as there is at least one ball in that node. Furthermore, a nonnegative integer $d$ is given, and at level $d$ or greater one ball is removed from the leftmost node before the balls move down to the next level. These steps are repeated until all balls are removed (i.e., after $n+d$ steps). Observe that when $d=∞$ the above tree can be modeled as a $\textit{trie}$ that stores $n$ independent sequences generated by a memoryless source with parameter $p$. Therefore, we coin the name $(n,d)$-tries for the tree just described, and to which we often refer simply as $d$-tries. Parameters of such a tree (e.g., path length, depth, size) are described by an interesting two-dimensional recurrence (in terms of $n$ and $d$) that – to the best of our knowledge – was not analyzed before. We study it, and show how much parameters of such a $(n,d)$-trie differ from the corresponding parameters of regular tries. We use methods of analytic algorithmics, from Mellin transforms to analytic poissonization.
Type de document :
Communication dans un congrès
Broutin, Nicolas and Devroye, Luc. 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'12), 2012, Montreal, Canada. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12), pp.1-12, 2012, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01197247
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 11 septembre 2015 - 12:55:11
Dernière modification le : mardi 7 mars 2017 - 15:18:30
Document(s) archivé(s) le : mardi 29 décembre 2015 - 00:36:36

Fichier

dmAQ0101.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01197247, version 1

Collections

Citation

Yongwook Choi, Charles Knessl, Wojciech Szpankowski. A New Binomial Recurrence Arising in a Graphical Compression Algorithm. Broutin, Nicolas and Devroye, Luc. 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'12), 2012, Montreal, Canada. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12), pp.1-12, 2012, DMTCS Proceedings. 〈hal-01197247〉

Partager

Métriques

Consultations de la notice

246

Téléchargements de fichiers

171