Expanded Parts Model for Semantic Description of Humans in Still Images

Gaurav Sharma 1 Frédéric Jurie 2 Cordelia Schmid 3
2 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
3 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : We introduce an Expanded Parts Model (EPM) for recognizing human attributes (e.g. young, short hair, wearing suits) and actions (e.g. running, jumping) in still images. An EPM is a collection of part templates which are learnt discriminatively to explain specific scale-space regions in the images (in human centric coordinates). This is in contrast to current models which consist of a relatively few (i.e. a mixture of) 'average' templates. EPM uses only a subset of the parts to score an image and scores the image sparsely in space, i.e. it ignores redundant and random background in an image. To learn our model, we propose an algorithm which automatically mines parts and learns corresponding discriminative templates together with their respective locations from a large number of candidate parts. We validate our method on three recent challenging datasets of human attributes and actions. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.
Type de document :
Article dans une revue
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2017, 39 (1), pp.87-101. 〈10.1109/TPAMI.2016.2537325〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01199160
Contributeur : Gaurav Sharma <>
Soumis le : lundi 20 mars 2017 - 18:55:14
Dernière modification le : mardi 26 septembre 2017 - 01:34:58

Fichier

epm_pami.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Gaurav Sharma, Frédéric Jurie, Cordelia Schmid. Expanded Parts Model for Semantic Description of Humans in Still Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2017, 39 (1), pp.87-101. 〈10.1109/TPAMI.2016.2537325〉. 〈hal-01199160〉

Partager

Métriques

Consultations de
la notice

705

Téléchargements du document

115