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Abstract

The (Gromov) hyperbolicity is a topological property of a graph, which has been recently
applied in several different contexts, such as the design of routing schemes, network security,
computational biology, the analysis of graph algorithms, and the classification of complex
networks. Computing the hyperbolicity of a graph can be very time consuming: indeed,
the best available algorithm has running-time O(n3.69), which is clearly prohibitive for big
graphs. In this paper, we provide a new and more efficient algorithm: although its worst-case
complexity isO(n4), in practice it is much faster, allowing, for the first time, the computation
of the hyperbolicity of graphs with up to 200,000 nodes. We experimentally show that our
new algorithm drastically outperforms the best previously available algorithms, by analyzing
a big dataset of real-world networks. Finally, we apply the new algorithm to compute the
hyperbolicity of random graphs generated with the Erdös-Renyi model, the Chung-Lu model,
and the Configuration Model.

1 Introduction

In recent years, the analysis of complex networks has provided several significant results, with
a huge amount of applications in sociology, biology, economics, statistical physics, electrical
engineering, and so on. These results are based on the analysis of very big real-world networks,
now made available by improvements in computer technology and by Internet. One of the major
challenges in this field is to understand which properties distinguish these networks from other
kinds of graphs, like random graphs [25], and which properties distinguish networks of different
kinds [16], in order to classify general and particular behavior.

In this context, a significant role is played by the hyperbolic structure underlying a complex
network, that is usually not present in random graphs [24, 6]. For instance, if we draw points
from a hyperbolic space and we connect nearby points, we obtain a graph that shares many
properties with real-world networks [21]. Furthermore, the Internet graph can be embedded in
the hyperbolic space, preserving some metric properties [26, 4].

Consequently, researchers have tried to measure this hyperbolic structure of complex net-
works, using Gromov’s definitions of hyperbolicity [15], which works in any metric space, and
does not rely on complicated structures not available in graphs (geodesics, connections, and so
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on). Intuitively, this parameter reflects how the metric space (distances) of a graph is close to
the metric space of a tree. In particular, given an undirected graph G = (V,E) (in this paper,
all graphs will be undirected), the Gromov hyperbolicity of a quadruple of nodes δ(x, y, v, w)
is defined as half the difference between the biggest two of the three sums d(x, y) + d(v, w),
d(x, v) + d(y, w), and d(x,w) + d(y, v), where d(·, ·) denotes the distance function between two
nodes, that is, the lenght of the shortest path connecting the two nodes. The hyperbolicity of
G is δ(G) = maxx,y,v,w∈V δ(x, y, v, w) (the smaller this value, the more hyperbolic the space is).

Several network properties are connected to the value of the hyperbolicity: here we will just
recall some of them. In [8], it is shown that a small hyperbolicity implies the existence of efficient
distance and routing labeling schemes. In [23], the authors observe that a small hyperbolicity,
that is, a negative curvature of an interconnection network, implies a faster congestion within
the core of the network itself, and in [18] it is suggested that this property is significant in
the context of network security and can, for example, mitigate the effect of distributed denial of
service attacks. In [12], instead, the hyperbolicity is used to implement a distance between trees,
successively applied to the estimation of phylogenetic trees. From a more algorithmic point of
view, it has been shown that several approximation algorithms for problems related to distances
in graphs (such as diameter and radius computation [7], and minimum ball covering [9]) have
an approximation ratio which depends on the hyperbolicity of the input graph. Moreover, some
approximation algorithms with constant approximation factor rely on a data-structure whose size
is proportional to the hyperbolicity of the input graph [20]. More in general, the hyperbolicity is
connected to other important graph quantities, like treelength [7] and chordality [30]. In the field
of the analysis of complex networks, the hyperbolicity and its connection with the size and the
diameter of a network has been used in [2] in order to classify networks into three different classes,
that is, strongly hyperbolic, hyperbolic, and non-hyperbolic, and to apply this classification to
a small dataset of small biological networks (a more extensive analysis of the hyperbolicity of
real-world networks has been also recently done in [5]). In general, it is still not clear whether
the hyperbolicity value is small in all real-world networks (as it seems from [19, 2]), or it is a
characteristic of specific networks (as it seems from [1]). Finally, the hyperbolicity of random
graphs has been analyzed in the case of several random graph models, such as the Erdös-Renyi
model [24] and the Kleinberg model [6]. Moreover, in this latter paper, it is stated that the
design of more efficient exact algorithms for the computation of the hyperbolicity would be of
interest.

Indeed, it is clear that the hyperbolicity computation problem is polynomial-time solvable
by the trivial algorithm that computes δ(x, y, v, w) for each quadruple of nodes. However, the
running-time is O(n4), where n is the number of nodes, which is prohibitive for real-world net-
works. The best known algorithm uses fast (max,min)-matrix multiplication algorithm to obtain
a running time O(n3.69) [14], and it has been shown that hyperbolicity cannot be computed in
O(n3.05) time, unless there exists a faster algorithm for (max,min)-matrix multiplication than
currently known. Such running times are prohibitive for analysing large-scale graphs with more
than 10,000 nodes.

Recently, new algorithms have been developed [11, 10]. Although these algorithms have
worst-case running time O(n4), they perform well in practice, making it possible to compute
the hyperbolicity of graphs with up to 50,000 nodes.

In this paper, we propose a new algorithm to compute the hyperbolicity of a graph, taking
some ideas from the algorithm in [11]. The new algorithm heavily improves the performances
through significant speed-ups in the most time-consuming part. The speed-ups will be so efficient
that the running-time of the new algorithm will be dominated by the pre-processing part, which
needs time O(mn), where m is the number of edges (we assume the input graph to be connected,
and consequently m+n = O(m)). This way, the O(n4) bottleneck is almost removed, at least in
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practical instances. For this reason, we will be able for the first time to compute the hyperbolicity
of graphs with up to 200,000 nodes. We will experimentally show these claims by analyzing a
big dataset of real-world networks of different kinds. Finally, we apply our algorithm to the
computation of the hyperbolicity of random graphs. In particular, in the Chung-Lu model, we
compute the hyperbolicity of graphs with up to 200,000 nodes, improving previous experiments
that stop at 1,100 nodes [13].

In Section 2, we will sketch the main features of the algorithm in [11], in order to make the
paper self-contained. Section 3 will explain how to modify that algorithm, in order to obtain
significant improvements, and Section 4 contains our experimental results. Finally, in Section 5,
we apply our algorithm to the analysis of the hyperbolicity of random graphs, as suggested in [6],
and Section 6 concludes the paper.

2 CCL: The Currently Best Available Algorithm

In this section, we will sketch the algorithm proposed in [11], whose main ideas and lemmas will
also be used in the next section. This algorithm improves the trivial algorithm by analyzing
quadruples in a specific order, and by cutting the exploration of the quadruples as soon as some
conditions are satisfied. We will name this algorithm ccl, from the initials of the surnames of
the authors. In particular, for each quadruple (p, q, r, s) of nodes, ccl computes τ(p, q; r, s) as
defined below, instead of computing δ(p, q, r, s).

τ(p, q; r, s) =
d(p, q) + d(r, s)−max{d(p, r) + d(q, s), d(p, s) + d(q, r)}

2
.

Note that δ(G) = maxp,q,r,s∈V τ(p, q; r, s), because if d(p, q) + d(r, s) is the maximum sum, then
τ(p, q; r, s) = δ(p, q, r, s), otherwise τ(p, q; r, s) < 0.

Lemma 1 (Lemma 3.2 of [11]). For any quadruple (p, q, r, s) of nodes, 2τ(p, q; r, s) ≤ min(d(p, q), d(r, s)).

In order to exploit this lemma, ccl stores all the N = n(n−1)
2 pairs of nodes inside a sequence

P = ({x1, y1}, . . . , {xN , yN}), in decreasing order of distance (that is, if d(xi, yi) > d(xj , yj), then
i < j). For each i, ccl iterates over all pairs {xj , yj} with j < i, and computes τ(xi, yi;xj , yj),
storing the maximum value found in a variable δL (clearly, δL is a lower bound for δ(G)). Even if
iterating over the whole sequence P would lead us to the trivial algorithm, by applying Lemma 1
we may cut the exploration as soon as d(xi, yi) ≤ 2δL, because the τ value of all remaining
quadruples is at most d(xi, yi).

A further improvement is provided by the following lemma.

Lemma 2 ([29]). Let x, y, v, w be four nodes, and let us assume that there exists an edge (x, x′)
such that d(x′, y) = d(x, y) + 1. Then, τ(x, y; v, w) ≤ τ(x′, y; v, w).

Definition 3. A pair {x, y} is far apart if there is no edge (x, x′) such that d(x′, y) = d(x, y)+1
and no edge (y, y′) such that d(x, y′) = d(x, y) + 1.

By Lemma 2, ccl only needs to analyze far apart pairs, and, hence, in the following we will
denote by P (respectively, N) the list (number) of far apart pairs. The pseudo-code of ccl is
provided in Algorithm 1.

Other improvements of this algorithm involve pre-processing the graph: first of all, we may
analyze each biconnected component separately [11, Section 2], then, we may decompose the
graph by modular decomposition, split decomposition [29], and clique decomposition [10].
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Algorithm 1: Hyperbolicity algorithm proposed in [11], ccl.
Let P = ({x1, y1}, . . . , {xN , yN}) be the list of far apart pairs, in decreasing order of
distance.
δL ← 0;
for i ∈ [1, N ] do

if d(xi, yi) ≤ 2δL then
return δL;

for j ∈ [1, i− 1] do
δL ← max(δL, τ(xi, yi;xj , yj));

return δL;

3 HYP: The New Algorithm

In this section, we propose a new algorithm, that we will call hyp, that improves upon Algo-
rithm 1 by further reducing the number of quadruples to consider.

3.1 Overview

The new algorithm hyp speeds-up the inner for loop in Algorithm 1, by decreasing the number
of pairs to be analyzed. In particular, let us fix a pair (xi, yi) in the outer for loop and a lower
bound δL: a node v is (i, δL)-skippable or simply skippable if, for any w, τ(xi, yi; v, w) ≤ δL.
It is clear that if a node v is skippable, the algorithm could skip the analysis of all quadruples
containing xi, yi, and v. Even if it is not easy to compute the set of skippable nodes, we will
define easy-to-verify conditions that imply that a node v is skippable (Section 3.2): a node not
satisfying any of these conditions will be named (i, δL)-acceptable or acceptable. Our algorithm
will then discard all quadruples (xi, yi, v, w) where either v or w is not acceptable.

Furthermore, we will define another condition such that if τ(xi, yi; v, w) > δL, then either
v or w must satisfy this condition (an acceptable node also satisfying this condition will be
defined (i, δL)-valuable or valuable). Hence, our algorithm will not only discard all quadruples
(xi, yi, v, w) where either v or w is not acceptable, but also all quadruples where both v and w
are not valuable.

In order to apply these conditions, when analyzing a pair (xi, yi), hyp computes the set
of acceptable and valuable nodes in time O(n) (actually, several nodes are skipped, thanks to
implementation tricks, so that the time might be much smaller). Then, for each valuable node
v, it analyzes pairs (v, w) preceding (xi, yi) such that w is acceptable. For this latter loop, we
record for each node v the list mate[v] of previously seen pairs (v, w), and then test each time if
w is acceptable. The pseudo-code for hyp is provided by Algorithm 2.

Lemma 4. The algorithm is correct.

Proof. First of all, δL ≤ δ(G) during the whole algorithm, so we only have to rule out the
possibility that the output is strictly smaller than δ(G). Let x, y, v, w be a quadruple such that
τ(x, y; v, w) = δ(G). We may assume without loss of generality that {x, y} and {v, w} are far-
apart (otherwise, we change the pairs using Lemma 2), and that {v, w} is before {x, y} in the
ordering of pairs (otherwise, we swap the pairs). By Lemma 1, d(x, y) ≥ 2δ(G) ≥ 2δL at any step
of the algorithm: if 2δL = d(x, y) ≥ 2δ(G) at some step, the algorithm is correct because δL never
decreases. Otherwise, the pair {x, y} is analyzed at some step i, v and w will be (i, δL)-acceptable,
and either v or w will be (i, δL)-valuable (by definition of acceptable and valuable). Hence, in
the inner loop, τ(x, y; v, w) is computed, and afterwards δL = τ(x, y; v, w) = δ(G).
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Algorithm 2: The new algorithm, hyp
Let P = ({x1, y1}, . . . , {xN , yN}) be the ordered list of far apart pairs.
δL ← 0;
mate[v]← ∅ for each v;
for i ∈ [1, N ] do

if d(xi, yi) ≤ 2δL then
return δL;

(acceptable, valuable) ← computeAccVal ();
for v ∈ valuable do

for w ∈ mate[v] do
if w ∈ acceptable then

δL ← max(δL, τ(xi, yi; v, w));

add yi to mate[xi];
add xi to mate[yi];

return δL

It remains to define which nodes are acceptable and which nodes are valuable, which is the
topic of the following section.

3.2 Acceptable and Valuable Nodes

First of all, let us fix i and δL, since in this section they play the role of parameters. Moreover,
for the sake of clarity, we will denote xi and yi simply by x and y. The following lemmas will
provide conditions implying that v is skippable, that is, there is no pair {v, w} appearing in P
before {x, y} such that τ(x, y; v, w) > δL. An acceptable node must not satisfy these conditions.
The first lemma holds by definition of skippable.

Lemma 5. If v does not belong to any (far-apart) pair {v, w} before {x, y} in P, then v is
skippable.

A second possibility to prove that a node is skippable is given by a simple corollary of the
following lemma.

Lemma 6 ([11]). For each quadruple of nodes (x, y, v, w), τ(x, y; v, w) ≤ mina,b∈{x,y,v,w} d(a, b).

Corollary 7. If d(x, v) ≤ δL or d(y, v) ≤ δL, then v is skippable.

Proof. If the assumptions are satisfied, for each w, τ(x, y; v, w) ≤ d(x, v) ≤ δL, or τ(x, y; v, w) ≤
d(y, v) ≤ δL.

The next lemmas make use of the notion of the eccentricity e(v) of a node, defined as
maxw∈V d(v, w).

Lemma 8. If 2e(v)− d(x, v)− d(y, v) < 4δL + 2− d(x, y), then v is skippable.

Proof. By contradiction, let us suppose that there exists a node w such that δL < τ(x, y; v, w).
Then, 2δL + 1 ≤ 2τ(x, y; v, w) = d(x, y) + d(v, w) −max(d(x, v) + d(y, w), d(x,w) + d(y, v)) ≤
d(x, y) +d(v, w)− 1

2(d(x, v) +d(y, w) +d(x,w) +d(y, v)) ≤ d(x, y) + e(v)− 1
2(d(x, v) +d(y, v))−

1
2d(x, y). By rearranging this inequality, we would contradict the hypothesis.

Lemma 9. If e(v) + d(x, y)− 3δL − 3
2 < max{d(x, v), d(y, v)}, then v is skippable.
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Proof. By contradiction, let us suppose that there exists a node w such that δL < τ(x, y; v, w).
By Corollary 7, d(y, w) > δL, that is, d(y, w) ≥ δL + 1

2 . Consequently, 2δL + 1 ≤ 2τ(x, y; v, w) =
d(x, y)+d(v, w)−max(d(x, v)+d(y, w), d(x,w)+d(y, v)) ≤ d(x, y)+d(v, w)−d(x, v)−d(y, w) ≤
d(x, y) + e(v) − d(x, v) − δL − 1/2. By exchanging the roles of x and y, we obtain 2δL + 1 ≤
d(x, y) + e(v)− d(y, v)− δL − 1

2 . These two inequalities contradict the hypothesis.

Definition 10. A node is acceptable if it does not satisfy the assumptions of Lemmas 5, 8 and 9
and Corollary 7.

Remark 11. Lemma 5 can be verified “on the fly”, by keeping track of already-seen nodes. The
other items are clearly verifiable in time O(1) for each node, and consequently the running-time
of this operation is O (|{v ∈ V : ∃{v, w} < {x, y}}|), which is less than or equal to O(n).

Remark 12. A variation of hyp verifies on the fly Lemma 9 and not Lemma 5. At the beginning
of the algorithm, for each node x, we pre-compute a list of all nodes v in decreasing order of e(v)−
d(x, v) (in time O(n2 log n)). Then, when computing acceptable nodes, we scan the list corre-
sponding to x, and we stop as soon as we find a node v such that e(v)+d(x, y)−3δL− 3

2 < d(x, v).
In this case, the running-time of this operation is O

(
|{v ∈ V : e(v) + d(x, y)− 3δL − 3

2 ≥ d(x, v)}|
)
.

Since we may swap the roles of x and y, at each step, our algorithm chooses between x and y
the less central node, according to closeness centrality measure [3].

The two remarks above correspond to two versions of our algorithm hyp, that we will call
hyp1 and hyp2, respectively. Now we need to define valuable nodes, using the following lemma,
which involves a given node c (formally, we would need to write c-valuable instead of valuable).
All choices of c are feasible, but if c is “central”, the running-time improves. We decided to set
c as the most central node according to closeness centrality measure [3].

Lemma 13. Let c be any fixed node, and, for any node z, let fc(z) := 1
2(d(x, y) − d(x, z) −

d(z, y)) + d(z, c). Then, for any two nodes v and w, we have 2τ(x, y; v, w) ≤ fc(v) + fc(w).

Proof. We have that, 2τ(x, y; v, w) = d(x, y)+d(v, w)−max(d(x, v)+d(y, w), d(x,w)+d(y, v)) ≤
d(x, y) + d(v, c) + d(c, w)− (d(x, v) + d(y, w) + d(x,w) + d(y, v))/2 = fc(v) + fc(w). The lemma
is thus proved.

As a consequence, if 2τ(x, y; v, w) > 2δL, either fc(v) > δL or fc(w) > δL. This justifies the
following definition.

Definition 14. An acceptable node v is c-valuable or valuable if fc(v) > δL.

Hence, if τ(x, y; v, w) > δL, then at least one of v and w must be valuable.

Remark 15. It is possible to compute if an acceptable node is valuable in time O(1), so there
is no time overhead for the computation of valuable nodes.

4 Experimental Results

In this section, we compare the best algorithm available until now [11] (ccl, whose pseudo-code
is Algorithm 1), with the two versions of our new algorithm, denoted as hyp1 and hyp2 (using
Remark 11 and Remark 12, respectively). Other available algorithms are the trivial algorithm,
which is significantly outperformed by ccl in [11], and the algorithm in [14]. This latter is
not practical, because it is based on fast matrix multiplication: indeed using O(n3) matrix
multiplication implementation we get the same time of the trivial algorithm. As far as we know,
no other competitors are available.

Both ccl and our algorithm, in both versions hyp1 and hyp2, share the following prepro-
cessing (see [11]):
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• compute biconnected components to treat them separately;

• computing the distances between all pairs of nodes;

• computing and sorting the list P of all far-apart pairs.

All the operations above need time O(m · n) and they will be not part of the comparison since
they are common to all three algorithms. Our tests were performed on an AMD Opteron(TM)
Processor 6276, running Fedora release 21. Our source code has been written in C and compiled
with gcc 4.9.2 with optimization level 3. The code is available at http://piluc.dsi.unifi.
it/lasagne and has also been included in the graph module of Sagemath [27].

We have collected a dataset composed by 62 graphs (available with the code) of different
kinds: social, peer-to-peer, autonomous systems, citation networks, and so on. The networks
were selected from the well-known SNAP dataset (http://snap.stanford.edu/), and from
CAIDA (http://www.caida.org). The number of nodes varies between 4,039 and 265,009
(1,396 and 50,219 after the preprocessing).
Number of quadruples. The first comparison analyzes how many quadruples are processed before
the hyperbolicity is computed - note that hyp1 and hyp2 analyze the same number of quadru-
ples, since the only difference between them is how acceptable and valuable nodes are computed.
The results are summarized in Figure 1a, which plots the number of quadruples processed by
the new algorithms with respect to ccl. More precisely, for each graph G, we draw a point in
position (x, y) if ccl analyzed x quadruples and both hyp1 and hyp2 analyzed y quadruples
to compute the hyperbolicity of G. We observe that the new algorithm analyzes a much smaller
number of quadruples, ranging from one hundred to few millions, drastically outperforming ccl,
which often analyzes millions of millions of quadruples, and even billions of millions. Of course,
the new algorithm is never outperformed, because the quadruples analyzed by hyp1 and hyp2
are always a subset of the quadruples analyzed by ccl.
Running time. Since the computation of acceptable and valuable nodes has a non-negligible
impact on the total running time, for a more fair comparison, we have also considered the
running time of the algorithms. In Figure 1b we report the time used by hyp1 and hyp2 with
respect to the time used by ccl. Also in this case, both hyp1 and hyp2 drastically outperform
ccl: the running-time is lower in most of the graphs, and the only cases where ccl is faster need
a very small amount of time (a few seconds at most). On the other hand, the new algorithms
are much faster when the total time is big: for instance, on input as-20120601.caida, ccl
needs at least one week (this lower bound was computed from the actual hyperbolicity and all
the distances between the nodes), while hyp1 is 367 times faster, needing less than half an hour,
and hyp2 is more than 5,000 times faster, needing less than two minutes. Similar results hold in
all graphs where the total running-time is big. This does not only mean that we have improved
upon ccl, but also that the improvement is concentrated on inputs where the running-time is
high. Furthermore, we observe that on all graphs the total running time of algorithm hyp2 is
less than half an hour: this means that, even if the worst-case complexity of this algorithm is
O(n4), in practice, the time used by the second part is comparable to the preprocessing time,
which is O(m · n). Hence, from a practical point of view, since real-world graphs are usually
sparse, the algorithm may be considered quadratic.

5 Synthetic Graphs

Recently, a different line of research has tried to compute asymptotic values for the hyperbolicity
of random graphs, when the number of nodes n tends to infinity. The simplest model considered
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line y = x separates the region where ccl is better (above) from the region where hyp1 and
hyp2 are better (below).

is the Erdös-Renyi random graph Gn,m, that is, we choose a graph with n nodes andm edges uni-
formly at random. In this model, it has been proved that the hyperbolicity tends to infinity [24],
and, if m is “much bigger than n”, exact asymptotics for δ have been computed [22]. Instead,
the hyperbolicity of sparse Erdös-Renyi graphs is not known, and it is mentioned as an open
problem in [22]. Among the other possible models, the Chung-Lu model and the Configuration
Model stand out for their simplicity (for more background, we refer to [17]). On these models,
as far as we know, it was only proved [28] that the hyperbolicity of a graph generated through
the Chung-Lu model tends to infinity if the maximum and minimum degree are “close to each
other” (meaning that their ratio is smaller than 2

1
3 ). Other models were analyzed in [6]: also in

that paper, the estimation of the hyperbolicity of random graphs of different kind is mentioned
as an open problem.

Following [6], we use our algorithm to shed some light on the behavior of these random
graphs, at least experimentally, in order to help formulating sensible conjectures on possible
asymptotics. In particular, we have restricted our attention to four examples, chosen among
the models where exact asymptotics have not been proved: Erdös-Renyi random graphs with
m = 3n and m = 5n, and graphs generated through the Chung-Lu and the Configuration
Model, with power-law degree distribution with exponent 2.5 (similar to the degree distribution
of several real-world networks [25]). For each number of nodes n = k · 10i where k < 10 and
i ≥ 2, we have generated 10 graphs and we have computed their hyperbolicity. More precisely,
we have computed the value 2δ

D , where D is the diameter, which is always between 0 and 1
because of Lemma 1: this value might be more interesting than the plain hyperbolicity value,
since, for most models, asymptotics for the diameter are known. We believe that this ratio can
then be used to formulate sensible conjectures. Figure 2 shows the average value of 2δ

D and the
corresponding standard error over the 10 measures performed.

We have been able to compute the hyperbolicity of Erdös-Renyi graphs with up to 60, 000
nodes, and graphs generated with the Configuration Model or the Chung-Lu model with up to
200, 000 nodes. In all models considered, it is quite evident that the ratio 2δ

D does not tend to
0, and consequently δ = Θ(D). Furthermore, the ratio in Erdös-Renyi graphs is not very far
from 1, even if the results are not precise enough to discriminate between δ = D

2 or δ = cD for
some c < 1

2 . Instead, in graphs generated through the Configuration Model or the Chung-Lu
model, this ratio seems to tend to a value between 0.5 and 0.7.
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6 Conclusion and Open Problems

In this paper, we have provided a new and more efficient algorithm to compute the hyperbolicity
of a graph: even if the running time is O(n4) in the worst case, it turns out to be O(m · n) in
practice. As an example of application, we have studied the hyperbolicity of random graphs.
The space requirement of the algorithm, as well as of its predecessors, is O(n2): in our case this
is needed to store all distances and the list of far-apart pairs. It would be nice to better deal
with memory usage (for instance, working on the disk) or avoiding the computation and storage
of all pairwise distances by using lower and upper bounds instead. Furthermore, this algorithm
may be parallelized, by analyzing at the same time different nodes v, or different pairs (x, y).
An open issue is determining how parallelization can improve performances. The algorithm can
be adapted to deal with weighted graphs. On the other hand, a widely accepted definition of
hyperbolicity for directed graphs is still missing. Finally, it would be nice to prove more precise
asymptotics for the hyperbolicity of random graphs.
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