Layer-averaged Euler and Navier-Stokes equations

Abstract : In this paper we propose a strategy to approximate incompressible hydrostatic free surface Euler and Navier-Stokes models. The main advantage of the proposed models is that the water depth is a dynamical variable of the system and hence the model is formulated over a fixed domain. The proposed strategy extends previous works approximating the Euler and Navier-Stokes systems using a multilayer description. Here, the needed closure relations are obtained using an energy-based optimality criterion instead of an asymptotic expansion. Moreover, the layer-averaged description is successfully applied to the Navier-Stokes system with a general form of the Cauchy stress tensor.
Type de document :
Article dans une revue
Communications in Mathematical Sciences, International Press, 2017, 〈10.4310/CMS.2017.v15.n5.a3〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger
Contributeur : Jacques Sainte-Marie <>
Soumis le : lundi 27 juin 2016 - 17:50:32
Dernière modification le : mercredi 21 mars 2018 - 18:58:22


Fichiers produits par l'(les) auteur(s)



Marie-Odile Bristeau, Cindy Guichard, Bernard Di Martino, Jacques Sainte-Marie. Layer-averaged Euler and Navier-Stokes equations. Communications in Mathematical Sciences, International Press, 2017, 〈10.4310/CMS.2017.v15.n5.a3〉. 〈hal-01202042v3〉



Consultations de la notice


Téléchargements de fichiers