L. M. Mir, H. Banoun, and C. Paoletti, Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: Direct access to the cytosol, Experimental Cell Research, vol.175, issue.1, pp.15-250014, 1988.
DOI : 10.1016/0014-4827(88)90251-0

E. Neumann, Membrane electroporation and direct gene transfer, Bioelectrochemistry and Bioenergetics, vol.28, issue.1-2, pp.247-2670302, 1992.
DOI : 10.1016/0302-4598(92)80017-B

URL : https://pub.uni-bielefeld.de/download/1774569/2311528

J. Teissie, M. Golzio, and M. P. Rols, Mechanisms of cell membrane electropermeabilization: A minireview of our present (lack of ?) knowledge, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1724, issue.3, pp.270-280, 2005.
DOI : 10.1016/j.bbagen.2005.05.006

URL : https://hal.archives-ouvertes.fr/hal-00078716

L. M. Mir, Bases and rationale of the electrochemotherapy, European Journal of Cancer Supplements, vol.4, issue.11, pp.38-44, 2006.
DOI : 10.1016/j.ejcsup.2006.08.005

URL : https://hal.archives-ouvertes.fr/hal-00319867

A. Silve and L. M. Mir, Cell Electropermeabilization and Cellular Uptake of Small Molecules: The Electrochemotherapy Concept, Clin. Asp. Electroporation, pp.69-82, 2011.
DOI : 10.1007/978-1-4419-8363-3_6

M. Breton and L. M. Mir, Microsecond and nanosecond electric pulses in cancer treatments, Bioelectromagnetics, vol.471, issue.2, 2011.
DOI : 10.1002/bem.20692

C. Jiang, R. V. Davalos, and J. C. Bischof, A Review of Basic to Clinical Studies of Irreversible Electroporation Therapy, IEEE Transactions on Biomedical Engineering, vol.62, issue.1, pp.4-20, 2015.
DOI : 10.1109/TBME.2014.2367543

R. Nuccitelli, R. Wood, M. Kreis, B. Athos, J. Huynh et al., First-in-human trial of nanoelectroablation therapy for basal cell carcinoma: proof of method, Experimental Dermatology, vol.7, issue.2, pp.135-137, 2014.
DOI : 10.1111/exd.12303

K. J. Müller, V. L. Sukhorukov, and U. Zimmermann, Reversible Electropermeabilization of Mammalian Cells by High-Intensity, Ultra-Short Pulses of Submicrosecond Duration, Journal of Membrane Biology, vol.184, issue.2, pp.161-170, 2001.
DOI : 10.1007/s00232-001-0084-3

A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao et al., Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF), Bioelectromagnetics, vol.28, issue.8, pp.655-663, 2007.
DOI : 10.1002/bem.20354

O. M. Nesin, O. N. Pakhomova, S. Xiao, and A. G. Pakhomov, Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1808, issue.3, pp.792-801, 2011.
DOI : 10.1016/j.bbamem.2010.12.012

P. T. Vernier, Y. Sun, and M. A. Gundersen, Nanoelectropulse-driven membrane perturbation and small molecule permeabilization, BMC Cell Biol, vol.7, issue.37, pp.1471-2121, 2006.
DOI : 10.1109/bmn.2006.330927

A. Silve, I. Leray, and L. M. Mir, Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10ns electric pulse, Bioelectrochemistry, vol.87, 2011.
DOI : 10.1016/j.bioelechem.2011.10.002

H. Pauly and H. Schwan, Uber die impedanz einer suspension von kugelförmigen teilchen mit einer schale, Z. Naturforsch, pp.14-125, 1959.
DOI : 10.1515/znb-1959-0213

T. Kotnik and D. Miklavcic, Second-order model of membrane electric field induced by alternating external electric fields, IEEE Transactions on Biomedical Engineering, vol.47, issue.8, pp.1074-1081, 2000.
DOI : 10.1109/10.855935

O. Kavian, M. Leguèbe, C. Poignard, and L. Weynans, ???Classical??? Electropermeabilization Modeling at the Cell Scale, Journal of Mathematical Biology, vol.1724, issue.4, pp.1-2
DOI : 10.1007/s00285-012-0629-3

M. Leguèbe, A. Silve, L. M. Mir, and C. Poignard, Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments, Journal of Theoretical Biology, vol.360, pp.360-2014
DOI : 10.1016/j.jtbi.2014.06.027

B. Poddevin, S. Orlowski, J. Belehradek-jr, and L. M. Mir, Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture, Biochemical Pharmacology, vol.42, pp.67-75, 1991.
DOI : 10.1016/0006-2952(91)90394-K

G. Pron, J. Belehradek-jr, L. M. Mir, G. Pron, J. Belehradek-jr et al., Identification of a Plasma Membrane Protein That Specifically Binds Bleomycin, Biochemical and Biophysical Research Communications, vol.194, issue.1, pp.333-337, 1993.
DOI : 10.1006/bbrc.1993.1824

G. Pron, N. Mahrour, S. Orlowski, O. Tounekti, B. Poddevin et al., Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism, Biochemical Pharmacology, vol.57, issue.1, pp.45-56, 1999.
DOI : 10.1016/S0006-2952(98)00282-2

O. Tounekti, G. Pron, J. Belehradek-jr, and L. M. Mir, Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized, Cancer Res, vol.53, pp.5462-5469, 1993.

T. Kotnik, A. Macek-lebar, D. Miklavcic, and L. M. Mir, Evaluation of cell membrane electropermeabilization by means of a nonpermeant cytotoxic agent, Biotechniques, vol.28, pp.921-926, 2000.

J. L. Biedler and H. Riehm, Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies, Cancer Res, vol.30, pp.1174-1184, 1970.

A. Silve, R. Vézinet, and L. M. Mir, Nanosecond-Duration Electric Pulse Delivery In Vitro and In Vivo: Experimental Considerations, IEEE Transactions on Instrumentation and Measurement, vol.61, issue.7, pp.2012-2013
DOI : 10.1109/TIM.2012.2182861

A. Silve, R. Vezinet, and L. M. Mir, Implementation of a broad band, high level electric field sensor in biological exposure device, 2010 IEEE International Power Modulator and High Voltage Conference, pp.711-714, 2010.
DOI : 10.1109/IPMHVC.2010.5958458

K. A. Debruin and W. Krassowska, Modeling Electroporation in a Single Cell. I. Effects of Field Strength and Rest Potential, Biophysical Journal, vol.77, issue.3, pp.1213-1224, 1999.
DOI : 10.1016/S0006-3495(99)76973-0

J. E. Dunn and J. S. Pearlman, Methods and Apparatus for Extending the Shelf Life of Fluid Food Products, US4695472 A, p.4695472, 1987.

M. I. Bazhal, M. O. Ngadi, G. S. Raghavan, and J. P. Smith, Inactivation of Escherichia coli O157:H7 in liquid whole egg using combined pulsed electric field and thermal treatments, LWT - Food Science and Technology, vol.39, issue.4, pp.420-426, 2006.
DOI : 10.1016/j.lwt.2005.02.013

M. Amiali, M. O. Ngadi, J. P. Smith, and G. S. Raghavan, Synergistic effect of temperature and pulsed electric field on inactivation of Escherichia coli O157:H7 and Salmonella enteritidis in liquid egg yolk, Journal of Food Engineering, vol.79, issue.2, pp.689-694, 2007.
DOI : 10.1016/j.jfoodeng.2006.02.029

H. Zakhem, J. Lanoisellé, N. I. Lebovka, M. Nonus, and E. Vorobiev, Influence of temperature and surfactant on Escherichia coli inactivation in aqueous suspensions treated by moderate pulsed electric fields, International Journal of Food Microbiology, vol.120, issue.3, pp.259-265, 2007.
DOI : 10.1016/j.ijfoodmicro.2007.09.002

J. T. Camp, Y. Jing, J. Zhuang, J. F. Kolb, S. J. Beebe et al., Cell Death Induced by Subnanosecond Pulsed Electric Fields at Elevated Temperatures, IEEE Transactions on Plasma Science, vol.40, issue.10, pp.2334-2347, 2012.
DOI : 10.1109/TPS.2012.2208202

V. L. Sukhorukov, H. Mussauer, and U. Zimmermann, The Effect of Electrical Deformation Forces on the Electropermeabilization of Erythrocyte Membranes in Low- and High-Conductivity Media, Journal of Membrane Biology, vol.163, issue.3, pp.235-245, 1998.
DOI : 10.1007/s002329900387

G. Pucihar, T. Kotnik, M. Kanduser, and D. Miklavcic, The influence of medium conductivity on electropermeabilization and survival of cells in vitro, Bioelectrochemistry, vol.54, issue.2, pp.107-115, 2001.
DOI : 10.1016/S1567-5394(01)00117-7

E. Ferreira, E. Potier, D. Logeart-avramoglou, S. Salomskaite-davalgiene, L. M. Mir et al., Optimization of a gene electrotransfer method for mesenchymal stem cell transfection, Gene Therapy, vol.1614, issue.7, pp.537-544, 2008.
DOI : 10.1038/gt.2008.9

URL : https://hal.archives-ouvertes.fr/hal-00319569

A. Ivorra, J. Villemejane, and L. M. Mir, Electrical modeling of the influence of medium conductivity on electroporation, Physical Chemistry Chemical Physics, vol.5, issue.34, 2010.
DOI : 10.1006/mthe.2002.0526

K. Schoenbach, R. Joshi, S. Beebe, and C. Baum, A scaling law for membrane permeabilization with nanopulses, IEEE Transactions on Dielectrics and Electrical Insulation, vol.16, issue.5, pp.1224-1235, 2009.
DOI : 10.1109/TDEI.2009.5293932

Y. Yen, J. R. Li, B. S. Zhou, F. Rojas, J. Yu et al., Electrochemical treatment of human KB cells in vitro, Bioelectromagnetics, vol.574, issue.9, pp.34-41, 1999.
DOI : 10.1002/(SICI)1521-186X(1999)20:1<34::AID-BEM5>3.0.CO;2-R

R. Rodaite-riseviciene, R. Saule, V. Snitka, and G. Saulis, Release of Iron Ions From the Stainless Steel Anode Occurring During High-Voltage Pulses and Its Consequences for Cell Electroporation Technology, IEEE Transactions on Plasma Science, vol.42, issue.1, pp.249-254, 2014.
DOI : 10.1109/TPS.2013.2287499

A. Silve-was-born-in-france, She received her M.S. degree in physics and biology interactions from the University of Paris 11, France. She then obtained her Ph.D. degree at the UMR 8203 CNRS-Institute Gustave-Roussy under the supervision of Lluis M. Mir. Since 2012, she has been working as a post-doc at the Institute for Pulsed Power and Microwave Technology of Karlsruhe Institute of Technology, Germany. Her current research interests include effects of nanosecond duration pulses on living cells and studies of transmembrane voltage and voltage-sensitive dyes, 1983.

A. Silve, Cell membrane permeabilization by 12-ns electric pulses: Not a purely dielectric, but a charge-dependent phenomenon, Bioelectrochemistry, vol.106, pp.369-378, 2015.
DOI : 10.1016/j.bioelechem.2015.06.002

URL : https://hal.archives-ouvertes.fr/hal-01203284

I. Leray-was-born-in-france, She received her M.S. degree in Applied Molecular Cytology from the University of Montpellier II, France. She is currently an assistant engineer at the UMR 8203 CNRS-Institute Gustave-Roussy, Her current research interests focus on effects of microsecond and nanosecond duration pulses on living cells, 1982.

M. Leguèbe and . Born, He received his PhD degree in Applied Mathematics from the University of Bordeaux, France. He is currently a post-doctoral scientist at the Max Planck Institute for Solar System Research in Göttingen, Germany. His current research interests include mathematical modeling and derivation of methods to solve partial differential equations, 1984.

C. Poignard and . Born, He received the M.S. degree in Applied Mathematics from ENS Cachan-Bretagne and Université Rennes I, France He is currently working as a research scientist at INRIA His main interests lie in the mathematical modeling of biological phenomena, 2003, and the Ph.D. degree from Université, 1979.

M. Lluis, . Mir-from-ecole-normale, and . Supérieure, Paris obtained his Ph.D in Toulouse He is the Director of the Laboratory of Vectorology and Anticancer Therapies (UMR 8203 CNRS-University Paris-Saclay at Gustave Roussy In 2010, he founded the European Associated Laboratory for the Applications of Electric Pulses in Biology and Medicine that he will co-direct until 2018. He published 196 scientific articles and 21 book chapters (H index = 57) His main interests lie in the fields of membrane electropermeabilization. He conceived and developed electrochemotherapy and also made seminal contributions to the electrotransfer of genes