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Abstract. In the era of big data, one may apply generic learning al-
gorithms for medical computer vision. But such algorithms are often
”black-boxes” and as such, hard to interpret. We still need new con-
structive models, which could eventually feed the big data framework.
Where can one find inspiration for new models in medical computer vi-
sion? The emerging field of Neurogeometry provides innovative ideas.
Neurogeometry models the visual cortex through modern Differential
Geometry: the neuronal architecture is represented as a sub-Riemannian
manifold R2×S1. On the one hand, Neurogeometry explains visual phe-
nomena like human perceptual completion. On the other hand, it pro-
vides efficient algorithms for computer vision. Examples of applications
are image completion (in-painting) and crossing-preserving smoothing.
In medical image computer vision, Neurogeometry is less known although
some algorithms exist. One reason is that one often deals with 3D images,
whereas Neurogeometry is essentially 2D (our retina is 2D). Moreover,
the generalization of (2D)-Neurogeometry to 3D is not straight-forward
from the mathematical point of view. This article presents the theoretical
framework of a 3D-Neurogeometry inspired by the 2D case. We survey
the mathematical structures and a standard frame for algorithms in 3D-
Neurogeometry. The aim of the paper is to provide a ”theoretical toolbox”
and inspiration for new algorithms in 3D medical computer vision.

Introduction

Machine learning algorithms using big data are often ”black-boxes”. Thus, they
can be hard to interpret. There is still a need of constructive models, so that
the big data framework can be fed by new structures. The visual cortex offers
inspiration for new methods in (medical) computer vision. From the biological
model of human vision, one builds a geometric model of the visual cortex. The
geometric model is in turn implemented for computer vision purposes. This is
the field of (2D)-Neurogeometry.

Biological intuition behind Neurogeometry The geometric model of the
visual cortex’s is built as follows. From the biological point of view, neurons of



the primary visual cortex V 1 are local detectors called ”point processors” [11].
They are retinotopically connected to small domains of the retina, called their
”receptive field” [10]. Mathematically, this structure is an isomorphic map from
the 2D retina to the 2D cortical layer. It means that each neuron is associated
to a position in our retina (x, y) ∈ R2, or equivalently in our visual field.

Then, the neuron acts as a filter on the optical signal of the retina’s photo-
receptors. Its transfer function is called its ”receptive profile”. The so-called
”simple neurons” of V 1 have a highly anisotropic profile [10]. They are sensitive
to the orientation θ ∈ S1 of the optical signal, in terms of the intensity gradient.
A simple neuron is thus represented by the corresponding position (x, y) ∈ R2

of the retina and by the preferred orientation θ ∈ S1 of its filter [13].
Interestingly, Hubel and Wiesel have shown that neurons detecting all ori-

entations at the same position (x, y) form an anatomical structure, called an
”orientation hypercolumn” [9]. This discovery led to the Nobel Prize in 1981. It
means that the fiber bundle R2 × S1 is neurally implemented in the brain.

Ultimately, one models the neuronal activity propagation in R2 × S2. The
horizontal cortico-cortical connections of V 1 are represented by a horizontal
distribution in sub-Riemannian geometry [13]. The propagation of the cortical
activity is then a propagation along sub-Riemannian geodesics [5].

Implementations of Neurogeometry for computer vision One finds im-
plementations of 2D-Neurogeometry in computer vision. For example, a sub-
Riemannian diffusion process leads to algorithms for image completion or in-
painting [16]. Fitting a sub-Riemannian geodesic enables contour completion [5].
Furthermore, a sub-Riemannian smoothing can smooth the image while pre-
serving crossings [6]. But the framework lacks general applications in medical
computer vision, although some exist [8]. One reason is that Neurogeometry is
essentially 2D, as the retina is 2D. And the generalization of 2D-Neurogeometry
to 3D-Neurogeometry is conceptually subtle. There is a need of a theoretical sur-
vey summarizing the mathematical structures in the 3D framework. The purpose
of this paper is to fill this gap.

Contribution and outline of the paper This paper aims to be a guide for
understanding and generalizing 2D-Neurogeometry to 3D-Neurogeometry. It is
a theoretical toolbox of 3D-Neurogeometry for: 1) conceiving new algorithms in
medical computer vision; and 2) interpreting existing algorithms. In Section 1,
we recall briefly some concepts of Differential Geometry. In Section 2, we describe
2D-Neurogeometry and its applications, as an introduction to the 3D case. In
Section 3, we describe 3D-Neurogeometry and its possible applications.

1 Requirements of Differential Geometry

The following is summarized in Table 1 at the end of the section. We assume
that the reader is familiar with the following concepts of Differential Geometry:



manifolds, (principal) fiber bundles, (pseudo-) Riemannian manifolds [14], Lie
groups, Lie algebra, bi-invariant (pseudo-)metrics [4][12], Lie group action on a
manifold, homogeneous manifolds [1], sub-Riemannian manifolds [2]. Some are
illustrated in Fig. 1.

Fig. 1: Left: S2 and R2 are manifolds. Center: tangent bundles of S2 and R2. Right-top:
principal bundle with base S2 and structure group S1. Right-bottom: principal bundle
with base R2 and structure group R. In all cases, the fibers are drawn in blue.

The aforementioned structures are present simultaneously in the computa-
tional framework of Neurogeometry. They arise with their set of related curves,
as shown in Table 1. Depending on the application for image processing, one is
interested in computing one curve or another. Thus, on shall understand their
differences and relations. Some curves are illustrated in Fig. 2.

Fig. 2: From Left to Right. S2 and R2 with action of SO(2). The orbits are in blue
and coincide with the curves created by the action of 1-parameter subgroups of SO(2)
(as SO(2) is 1-dimensional). Riemannian geodesics on S2 and R2 for standard induced
metric from R3 on S2 and the Euclidean metric on R2.

2 The example of 2D-Neurogeometry

This section serves as an introduction of the 3D case. An image processing
pipeline using 2D-Neurogeometry usually follows three steps: 1. Lift (L), 2. Pro-
cessing (P) and 3. Projection (P) (LPP-frame, see Fig. 3). These steps can be
iterated [5][15] or not [17][6]. Biologically, the lift represents the activation of the
neurons in V1. The processing of the lifted image represents the propagation of
the neuronal activity in V1. The projection corresponds to our visual interpre-
tation of the information given by the visual cortex after neuronal propagation.

First, we survey the mathematical structures (subsections 2.1, 2.2). We sum-
marize them in Table 2. Then we present the LPP-frame of standard algorithms
in 2D-Neurogeometry (subsection 2.3). Application-oriented readers can start
with subsection 2.3, then go to subsections 2.1, 2.2.



On M On (P,M) On (M,G) On (P,M,G) On G

• V F -curves • V O-curves • V -curves • γG
ex: γG-action ex: γG-action ex: γGeNo metric

• HF -curves • HO-curves • H-curves

Metric • γR • V F -γR • V O-γR • V -γR IF gR bi-inv.:
gR • HF -γR • HO-γR • H-γR γG = γR

SR-metric • V ∆-curves IF ∆ ⊥ fibers: IF ∆ ⊥ orbits: IF ∆ ⊥ fibers: IF G Carnot:
gSR • H∆-curves V ∆ = V F V ∆ = V O V ∆ = V ∃ gSR

ex: γSR H∆ = HF H∆ = HO H∆ = H

Table 1: Curves related to the different structures of Differential Geometry in Neu-
rogeometry. For spaces: M is a manifold, (P,M) a fiber bundle of base M , (M,G)
is M endowed with a G action, (P,M,G) is a principal bundle of base M and struc-
ture group G, G is a Lie group. For verticality/horizontality: V F , V O, V and V ∆:
vertical in the sense of fibers, orbits, orbits=fibers (same notion for principal bundle),
∆-distribution. Same notations using H for horizontal. For metric structures: gR

is a (pseudo)-Riemannian metric, gSR is a sub-Riemannian metric. For curves: γ de-
notes a notion of geodesics. We have γG, γGe , γR, γSR for group geodesic, 1-parameter
subgroup, Riemannian geodesics and sub-Riemannian geodesic.

2.1 Structures on the lifted space SE(2) = R2 × SO(2) = R2 × S1

Group actions The law of SE(2) is, for all (t1, R1), (t2, R2) ∈ SE(2):

(t1, R1) ∗ (t2, R2) = (R1.t2 + t1, R1.R2)

In this law, we read the group actions on SE(2) and their general properties.
SE(2) acts on itself through the left and right translations (freely and transi-
tively). As a Lie subgroup, SO(2) acts on SE(2) on the left and right (freely
but not transitively). Note that the right SO(2)-action is trivial on the R2 part.
Moreover, the right SO(2)-action makes SE(2) a principal bundle of base R2

and structure group SO(2).

A sub-Riemannian metric and two Riemannian metrics To introduce
the sub-Riemannian metric, one first defines its horizontal distribution ∆. In
2D-Neurogeometry one takes the moving frame (X1, X2, X3) on R2 × S1:

X1 = cos θ.∂x + sin θ.∂y,

X2 = ∂θ,

X3 = − sin θ.∂x + cos θ.∂y

to define ∆ = (X1, X2). The sub-Riemannian metric gSR is defined as the Eu-
clidean metric on ∆. In the standard basis ∂x, ∂y, ∂z, its inverse writes:

gSR(x, y, θ)ij =

 cos2 θ sin θ cos θ 0
sin θ cos θ sin2 θ 0

0 0 1





In practice, the sub-Riemannian metric is usually approximated the Riemannian
metric gRε whose inverse is [5]:

gRε (x, y, θ)ij =

 cos2 θ + ε2 sin2 θ (1− ε2) sin θ cos θ 0
(1− ε2) sin θ cos θ sin2 θ + ε2 cos2 θ 0

0 0 1


In addition, one defines a left-invariant metric gRµ as:

gRµ (0, 0, 0)ij =

µ 0 0
0 µ 0
0 0 1


on the Lie algebra se(2). Then, one propagates it on SE(2) through left transla-
tions. gRµ is (SE(2))-left-invariant by construction. But gRµ is not (SE(2))-right-

invariant as there is no bi-invariant metric on SE(2) [12]. gRµ is invariant by the
SO(2)-left and SO(2)-right actions.

A survey of curves From Table 1 and the aforementioned structures, we survey
the curves on SE(2). We have group geodesics of SE(2), Riemannian geodesics
of gRµ , sub-Riemannian geodesics of gSR and their Riemannian approximation

through gRε . Group and Riemannian geodesics differ as gRµ is not bi-invariant.

w.r.t. the right SO(2)-action, some are vertical or horizontal (taken w.r.t. gRµ ).

Examples of vertical group geodesics, vertical Riemannian geodesics for gRµ and

vertical sub-Riemannian geodesics for gSR are orbits of the SO(2)-action. Exam-
ples of horizontal group geodesics, horizontal Riemannian geodesics for gRµ are
straight lines between two translations. Examples of horizontal sub-Riemannian
geodesics for gSR are integral curves of X1.

w.r.t. ∆, some are ∆-vertical or ∆-horizontal. There is no ∆-vertical group
geodesics, and no ∆-vertical Riemannian geodesic. Example of ∆-horizontal
group geodesics and ∆-horizontal Riemannian geodesic for gRµ are orbits of the
right SO(2)-action. Sub-Riemannian geodesics are always ∆-horizontal.

2.2 Structures on the image domain R2

Projecting R2 × S1 along the fibers S1 gives R2. Equivalently, we can quotient
SE(2) by the SO(2)-right. The residual left SE(2)-action on R2 is: (t, R) ◦ x =
R.x+ t. We read the related left SO(2)-action. Regarding the metric structures,
gRµ was right SO(2)-invariant. Thus the projection is a Riemannian submersion

for gRµ . It induces a Riemannian metric on R2 which is the Euclidean metric.
Projecting the horizontal Riemannian geodesics gives linear curves in R2. The
projection of the sub-Riemannian geodesics gives the elastica curves [5], which
can be linear or curvilinear.



Actions Metrics

SE(2) = R2 × S1
• left, right translations of SE(2) • gRµ
• left, right actions of SO(2) • gSR

• gSRε
R2 • left action of SE(2) • Euclidean metric

• left action of SO(2) (projection of gRµ )

Table 2: Structures of 2D-Neurogeometry. Use Table 1 to get the related curves.

2.3 The three steps

First step: Lift The image domain D ⊂ R2 is lifted to D̃ ∈ R2 × S1 [5]
(positions and orientations taken with directions). The lift is implemented by
detecting the direction of the intensity gradient:

∇I
||∇I||

= (− sin θ, cos θ)

at each point (x, y) ∈ D. ThenD is mapped to a surface D̃: (x, y) 7→ (x, y, θ(x, y))
in R2 × S1. At the end of this step, the intensity is a function of D̃.

Alternatively, one can lift to the projective tangent bundle PTR2 = SE(2)/Z2

(positions and orientations taken without directions)[17] . Whether one should
use SE(2) of PTR2 is discussed here [17](rem. 4, 13).

Second step: Processing First, the processing can be the evolution of par-
tial differential equations (PDEs) with sub-Riemannian operators. For exam-
ple, the sub-Riemannian diffusion is defined with the sub-Riemannian Laplacian
∆SR = X2

1 +X2
2 . Depending on the goal of the processing, one adds drift (also

called convection) to the PDE: there is drift for completion purposes [17] and
for enhancement [8]. Equivalently, one can formulate this step as an oriented
random walk. One writes the corresponding Kolmogorov equations.

Some PDEs are computed with the lifted intensity I(x, y, θ). In-painting
methods provide examples: one ”paints” directly in the lifted space [17]. Others
compute with the activity function: u(x, y, θ) = u(x, y, θ)δΣ where u(x, y, θ) =
|X3(θ).∇I(x, y)|. In-painting methods provide also examples of this approach
[15]. The corrupted image has a hole in D̃. The activity propagation amounts to
”fill the hole” by a minimal surface. Then, one ”paints” the surface by linking
the isolevel sets with sub-Riemannian geodesics.

Then, the processing can be curve fitting. Which curve do we fit? One can
fit a sub-Riemannian geodesic, as in the second example of in-painting above
[15]. Another example is contour completion [5]. One can also fit a Rieman-
nian geodesic or a group geodesic for enhancement of 1-dimensional structures.
A comparison of the two suggests that one should prefer the group geodesic
[8][7](called the ”exponential curve” here).



Third step: Projection The processed lifted image on R2×S1 is projected to
a ”standard” image defined on R2. The projection can be done in two different
ways. First, one can use the ”verticality” along fibers of the bundle R2 × S1. In
this case, one projects along the fiber S1, choosing a θ that maximizes a likeli-
hood criterion[16]. Second, one can use the ”∆-verticality” of sub-Riemannian
geometry. In this case, one projects along the normal of the horizontal distribu-
tion ∆ through a concentration scheme [15]. This allows for several maxima at
each point, i.e. crossings on the image.

Image, on R2

Lifted image, Processed

Processed image

on SE(2) or PTR2
Lifted image

1. Lift 3. Projection

2. Processing

Fig. 3: The 3 steps of image processing in 2D neurogeometry.

3 A theoretical toolbox for 3D-Neurogeometry

As implemented by now [6] [8], image processing pipelines using 3D-neurogeometry
also follows the three same steps: 1. Lift (L), 2. Processing (P) and 3. Projection
(P) (see Fig. 4). This steps could be iterated or not. The difference with the
2D-neurogeometry however is the Processing. In this step, there is an additional
level of structure in 3D-Neurogeometry w.r.t. the 2D case.

As in the 2D-case, we first survey the mathematical structures and summa-
rize them in Table 5 (subsections 3.1,3.2, 3.3). Then we present the LPP-frame
of a 3D-Neurogeometry (subsection 3.4). Application-oriented readers can read
subsection 3.4 first, and then go to subsections 3.1, 3.2, 3.3.

3.1 Structures on the Lie group SE(3) = R3 × SO(3)

Group actions The law of SE(3) is, for all (t1, R1), (t2, R2) ∈ R3 × SO(3):

(t1, R1) ∗ (t2, R2) = (R1.t2 + t1, R1.R2).

We read the group actions on SE(3) and their properties (see Table 3).
As a Lie group, SE(3) acts on itself through left and right translations. As

subgroups of SE(3), SO(3) and SO(2) also act on SE(3), on the left and right.
The right SO(3)-action makes SE(3) a trivial principal bundle over R3 with
structure group SO(3). The right SO(2)-action on SE(3) makes the SE(3) a
principal bundle over R3 × S2 with structure group SO(2).



Free Transitive Orbits Isotropy Quotient On R3-part

SE(3)-actions
Left yes yes SE(3) {e} {[e]} fundamental
Right yes yes SE(3) {e} {[e]} trivial

SO(3)-actions
Left yes no ∼ SO(3) {e} R3 fundamental
Right yes no ∼ SO(3) {e} R3 trivial

SO(2)-actions
Left yes no ∼ SO(2) {e} R3 × S2 fundamental
Right yes no ∼ SO(2) {e} R3 × S2 trivial

Table 3: Properties of group actions on SE(3). ”Isotropy” means the isotropy groups.
Actions on the R3-part of SE(3) = R3 × SO(3) are the main distinction between
Left and Right. ”Fundamental” denotes the fundamental representation on R3, and
”Trivial” the trivial representation on R3.

A left-invariant metric and a bi-invariant pseudo-metric As in the 2D
case, one defines the left-invariant metric gRµ on SE(3). gRµ is left-invariant by

construction. But gRµ is not right-invariant.

gRµ is invariant by the left and right SO(3)-actions. The left SO(3)-invariance

comes from the left invariance of gRµ . The right SO(3)-invariance is shown con-

sidering the right action on the parts R3 and SO(3) separately, as gRµ is diagonal.

Consequently, gRµ is also invariant by left and right SO(2)-actions.
As opposed as the 2D case, there exist bi-invariant pseudo-metrics on SE(3).

We refer to [12] for their explicit construction. A possible choice is:

gBI(0, I3)ij =

(
0 I3
I3 0

)
known as the Klein form. Here I3 is the 3D identity matrix.

A survey of curves on SE(3) From Table 1 and the aforementioned struc-
tures, we survey the curves on SE(3). We have the group geodesics of SE(3),
the Riemannian geodesics of gRµ an the pseudo-Riemannian geodesics of gBI .
The group geodesics coincide with the pseudo-Riemannian ones, but differ from
the Riemannian ones [14] (see Table 1).

w.r.t. a SO(3)- or SO(2)-action, some of these curves are vertical, some are
horizontal (taken w.r.t. gRµ ). Examples of vertical group geodesics are the orbits
of the SO(2)-action or the action of the group geodesics of SO(3). Examples of
horizontal group geodesics are those generated by an element of the Lie algebra
of the translations.

3.2 Structures on the lifted space R3 × S2 and on R3

We go from SE(3) to R3 × S2, by quotienting the right SO(2)-action. The quo-
tient is implemented by choosing an origin in R3×S2, usually (0, a). An element
(x, n) ∈ R3 × S2 is represented as the result of the action of the corresponding
(x,R) on (0, a), where R is precisely the rotation bringing a onto n.



Induced group actions The induced action of SE(3) on R3 × S2 writes, for
all (t, R) ∈ SE(3) and (x, n) ∈ R3 × S2:

(t, R) ∗ (x, n) = (R.x+ t, R.n)

We read the group actions on R3 × S2 and their properties (see Table 4).
The SE(3)-action is transitive on R3×S2. It makes R3×S2 a homogeneous

space. As the isotropy group is SO(2) everywhere, the orbit-stabilizer theorem
gives: R3 × S2 = SE(3)/SO(2). Moreover, it provides the justification of the
choice of an origin (0, a) in computer vision algorithms. All points are equivalent
in a homogeneous space. Computations do not depend on the choice of origin.

Free Trans. Orbits Isotropy Quotient On R3-part

SE(3)-action Left no yes R3 × S2 SO(2) {[e]} fundamental

SO(3)-action Left no no ∼ SO(3)/SO(2) SO(2) R3 fundamental

Table 4: Induced group actions on R3 × S2. Note that there are no more right actions,
as SO(2) is not a normal group of SO(3) nor SE(3). ”Isotropy” means the ”isotropy
groups”. ”Fundamental” denotes the fundamental representation on R3.

Induced Riemannian and pseudo-Riemannian metrics gRµ was invariant
by the right SO(2)-action. Thus, the projection onto R3 × S2 is a Riemannian
submersion for gRµ . It induces a Riemannian metric on R3×S2, still denoted gRµ .

gRµ is still SE(3)- and SO(3)- invariant.

Similarly, gBI was invariant by the right SO(2)-action. It induces a Rieman-
nian pseudo-metric on R3 × S2, which is still SE(3)- and SO(3)- invariant.

A sub-Riemannian metric As in 2D, one defines a sub-Riemannian metric
gSR on R3×S2 by first defining ∆. We take (X1, X2, X3, X4, X5) on R3×S2 as:

X1 = cos θ cosφ.∂x + cos θ sinφ.∂y − sin θ.∂z,

X2 = − sinφ.∂x + cosφ.∂y,

X3 = ∂θ,

X4 = ∂φ,

X5 = sin θ cosφ.∂x + sin θ sinφ.∂y + cos θ.∂z

and ∆ = Span{X1, X2, X3, X4}. gSR is defined as the Euclidean metric on ∆. As
in the 2D-case, it would be approximated by a Riemannian metric in practice.

A survey of curves From Table 1 and the aforementioned structures, we
survey the curves on SE(3). However, we have a new class of curves in 3D-
Neurogeometry w.r.t. 2D-Neurogeometry: the curves of the lifted space R3×S2

that are projection of curves of SE(3), as the projection of the group geodesics.



In the following, ”verticality” and ”horizontality” are taken w.r.t. the right
SO(2)-action. Projecting horizontal (gRµ ) Riemannian geodesics gives general-

ized Riemannian geodesics. Projecting horizontal (for gBI) pseudo-Riemannian
geodesics gives generalized pseudo-Riemannian geodesics. More precisely, a smooth
horizontal curve in SE(3) is a (pseudo-) Riemannian geodesics if and only if it is
a (pseudo-) Riemannian geodesics in R3 × S2. The projection of vertical curves
are points. The projection of a curve that is vertical at one point has a ”cusp”.

Ultimately, we have the curves that are ∆-horizontal in the sense of the
sub-Riemannian geometry. Among them, we have sub-Riemannian geodesics.

3.3 Structure on the image domain R3

The previous structures are projected to R3, using the projection of the trivial
bundle R3 × S2 on the first component. In particular, projecting the previ-
ous curves give curves in R3. We have: the projection of the sub-Riemannian
geodesics (an equivalent of 2D elastica curves), the double-projection of the
group geodesics (equivalently the double-projection of the pseudo-Riemannian
curves for gBI), the double-projection of the Riemannian geodesics for gRµ .

Actions Metrics

SE(3)
• left, right translations of SE(3) • gRµ
• left, right actions of SO(3) • gBI
• left, right actions of SO(2)

R3 × S2

• left action of SE(3) • projection of gRµ
• left action of SO(3) • projection of gBI

• gSR
• gSRε

R3 • left action of SE(3) • Euclidean metric
• left action of SO(3) (double-projection of gRµ )

Table 5: Structures of 3D-Neurogeometry. Use Table 1 to get the related curves.

3.4 The three steps

First step: Lift As in 2D, one lifts the medical image defined on D ⊂ R3 to an
image defined on D̃ ⊂ R3×S2, using the gradient direction at each (x, y, z) ∈ D:

∇I
||∇I||

= (sin θ cosφ, sin θ sinφ, cos θ)

Second step: Processing First, as in 2D, the processing could be performed
on R3 × S2 without taking into account the SE(3) structure. One would only
consider the sub-Riemannian structure on the lifted space R3 × S2. In doing



so, one could define sub-Riemannian partial differential equations as in 2D-
Neurogeometry, using the Xi as differential operators. For in-painting purposes,
the 2D work of [16][15] provides intuition. Similarly, one could add drift (or
convection) depending on the application.

Then, in contrast to 2D, the processing can be performed on SE(3). This
is done by embedding R3 × S2 in SE(3) as the quotient of SE(3) by a SO(2)-
action. Then, performing SO(2)-invariant computations on SE(3) is equivalent
to performing computations on R3 × S2. The advantage is that one has more
structures, e.g. more curves for curve fitting (compare subsections 2.2 and 3.4).

This is the first main distinction between the 2D and the 3D case. In 2D-
Neurogeometry, we have one (trivial) quotient of R2 × S2. In contrast in 3D-
Neurogeometry, one has two successive quotients of SE(3) = R3 × SO(3).

The second distinction is the existence of bi-invariant pseudo-metrics gBI

in the 3D-case, but not in the 2D-case [12]. As such, gBI could represent a
new powerful tool of 3D-Neurogeometry. We note that in medical computer
vision, the bi-invariant pseudo-metric gBI is rarely used as opposed to algorithms
in robotics [18]. Considering its bi-invariance property, it would be interesting
to consider it for the computations. For example, gBI characterizes the group
geodesics of SE(3): this could simplify computations. gBI could replace the use
of gRµ as an auxiliary metric, suppressing the need of a choice of µ.

Third step: Projection The projection of the lifted image to an image defined
on R3 could be defined in two different ways, exactly as in the 2D-case.

Image, on R3

Lifted image, Processed

Processed image

on R3 × S2
Lifted image

1. Lift 3. Projection

2. ProcessingLifted image,

on SE(3)

Processed

Lifted image

Fig. 4: The 3 steps of image processing for 3D-neurogeometry.

Conclusion

This paper is a theoretical toolbox for creating new algorithms for 3D medical
computer vision. We have described the mathematical structures arising in the
generalization of (2D-)Neurogeometry to 3D images.
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