J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, issue.3, pp.839-851, 2005.
DOI : 10.1016/j.neuroimage.2005.02.018

B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain, Medical Image Analysis, vol.12, issue.1, pp.26-41, 2008.
DOI : 10.1016/j.media.2007.06.004

J. Barnes, R. I. Scahill, C. Frost, J. M. Schott, M. N. Rossor et al., Increased hippocampal atrophy rates in AD over 6 months using serial MR imaging, Neurobiology of Aging, vol.29, issue.8, pp.1199-1203, 2008.
DOI : 10.1016/j.neurobiolaging.2007.02.011

J. L. Bernal-rusiel, D. N. Greve, M. Reuter, B. Fischl, and M. R. Sabuncu, Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models, NeuroImage, vol.66, pp.249-260, 2012.
DOI : 10.1016/j.neuroimage.2012.10.065

R. Black, B. Greenberg, J. M. Ryan, H. Posner, J. Seeburger et al., Scales as outcome measures for Alzheimer's disease, Alzheimer's & Dementia, vol.5, issue.4, pp.324-339, 2009.
DOI : 10.1016/j.jalz.2009.05.667

M. Boccardi, R. Ganzola, M. Bocchetta, M. Pievani, A. Redolfi et al., Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol, J. Alzheimers Dis, vol.26, pp.61-75, 2011.

O. Camara, J. Schnabel, G. R. Ridgway, W. R. Crum, A. Douiri et al., Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal Alzheimer's disease images, NeuroImage, vol.42, issue.2, pp.696-709, 2008.
DOI : 10.1016/j.neuroimage.2008.04.259

M. J. Cardoso, K. Leung, M. Modat, S. Keihaninejad, D. M. Cash et al., STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation, Medical Image Analysis, vol.17, issue.6, pp.671-684, 2013.
DOI : 10.1016/j.media.2013.02.006

D. L. Collins and A. C. Evans, Animal: Validation and Applications of Nonlinear Registration-Based Segmentation, International Journal of Pattern Recognition and Artificial Intelligence, vol.11, issue.08, pp.1271-1294, 1997.
DOI : 10.1142/S0218001497000597

P. Coupé, J. V. Manjón, V. Fonov, J. Pruessner, M. Robles et al., Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation, NeuroImage, vol.54, issue.2, pp.940-954, 2011.
DOI : 10.1016/j.neuroimage.2010.09.018

A. M. Dale, B. Fischl, and M. I. Sereno, Cortical Surface-Based Analysis, NeuroImage, vol.9, issue.2, pp.179-194, 1999.
DOI : 10.1006/nimg.1998.0395

J. D. Dawson and S. W. Lagakos, Analyzing laboratory marker changes in AIDS clinical trials, Journal of AIDS, vol.4, pp.667-676, 1991.

J. D. Dawson and S. W. Lagakos, Size and Power of Two-Sample Tests of Repeated Measures Data, Biometrics, vol.49, issue.4, pp.1022-1032, 1993.
DOI : 10.2307/2532244

P. Diggle, P. Heagerty, K. Liang, and S. Zeger, Analysis of Longitudinal Data., Biometrics, vol.53, issue.2, 2002.
DOI : 10.2307/2533983

B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, 1994.
DOI : 10.1007/978-1-4899-4541-9

S. F. Eskildsen, P. Coupé, V. Fonov, J. V. Manjón, K. K. Leung et al., BEaST: Brain extraction based on nonlocal segmentation technique, NeuroImage, vol.59, issue.3, pp.2362-2373, 2012.
DOI : 10.1016/j.neuroimage.2011.09.012

URL : https://hal.archives-ouvertes.fr/inserm-00629187

B. Fischl, FreeSurfer, NeuroImage, vol.62, issue.2, pp.774-781, 2012.
DOI : 10.1016/j.neuroimage.2012.01.021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685476

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich et al., Whole Brain Segmentation, Neuron, vol.33, issue.3, pp.341-355, 2002.
DOI : 10.1016/S0896-6273(02)00569-X

URL : http://doi.org/10.1016/s0896-6273(02)00569-x

V. S. Fonov, P. Coupé, M. Styner, and D. L. Collins, Automatic lateral ventricle segmentation in infant population with high risk of autism. Annual Meeting of the Organisation for Human Brain Mapping, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683773

N. C. Fox, G. R. Ridgway, and J. M. Schott, Algorithms, atrophy and Alzheimer's disease: Cautionary tales for clinical trials, NeuroImage, vol.57, issue.1, pp.15-18, 2011.
DOI : 10.1016/j.neuroimage.2011.01.077

P. A. Freeborough and N. C. Fox, The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI, IEEE Transactions on Medical Imaging, vol.16, issue.5, pp.623-629, 1997.
DOI : 10.1109/42.640753

L. Frison and S. J. Pocock, Repeated measures in clinical trials: Analysis using mean summary statistics and its implications for design, Statistics in Medicine, vol.45, issue.13, pp.1685-1704, 1992.
DOI : 10.1002/sim.4780111304

G. B. Frisoni, C. R. Jack, M. Bocchetta, C. Bauer, K. S. Frederiksen et al., The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: Evidence of validity, Alzheimer's & Dementia, vol.11, issue.2, pp.111-125
DOI : 10.1016/j.jalz.2014.05.1756

C. Frost, M. G. Kenward, and N. C. Fox, The analysis of repeated ???direct??? measures of change illustrated with an application in longitudinal imaging, Statistics in Medicine, vol.73, issue.21, pp.3275-3286, 2004.
DOI : 10.1002/sim.1909

C. Frost, M. G. Kenward, and N. C. Fox, Optimizing the design of clinical trials where the outcome is a rate. Can estimating a baseline rate in a run???in period increase efficiency?, Statistics in Medicine, vol.25, issue.19, pp.3717-3731, 2008.
DOI : 10.1002/sim.3280

J. L. Gunter, M. M. Shiung, A. Manduca, and C. R. Jack, Methodological considerations for measuring rates of brain atrophy, Journal of Magnetic Resonance Imaging, vol.20, issue.1, pp.16-24, 2003.
DOI : 10.1002/jmri.10325

D. Holland and A. M. Dale, Nonlinear registration of longitudinal images and measurement of change in regions of interest, Medical Image Analysis, vol.15, issue.4, pp.489-497, 2011.
DOI : 10.1016/j.media.2011.02.005

D. Holland, L. K. Mcevoy, and A. M. Dale, Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI, Human Brain Mapping, vol.50, issue.11, pp.2586-2602, 2012.
DOI : 10.1002/hbm.21386

Y. Y. Hsu, N. Schuff, A. T. Du, K. Mark, X. Zhu et al., Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia, Journal of Magnetic Resonance Imaging, vol.379, issue.3, pp.305-310, 2002.
DOI : 10.1002/jmri.10163

X. Hua, D. P. Hibar, C. R. Ching, C. P. Boyle, P. Rajagopalan et al., Unbiased tensor-based morphometry: Improved robustness and sample size estimates for Alzheimer's disease clinical trials, NeuroImage, vol.66, pp.648-661, 2013.
DOI : 10.1016/j.neuroimage.2012.10.086

C. R. Jack, M. M. Shiung, J. L. Gunter, P. C. O-'brien, S. D. Weigand et al., Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD, Neurology, vol.62, issue.4, pp.591-600, 2004.
DOI : 10.1212/01.WNL.0000110315.26026.EF

C. R. Jack, D. S. Knopman, W. J. Jagust, R. C. Petersen, M. W. Weiner et al., Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers, The Lancet Neurology, vol.12, issue.2, pp.207-216, 2013.
DOI : 10.1016/S1474-4422(12)70291-0

M. Jenkinson and S. Smith, A global optimisation method for robust affine registration of brain images, Medical Image Analysis, vol.5, issue.2, pp.143-156, 2001.
DOI : 10.1016/S1361-8415(01)00036-6

J. Jovicich, M. Marizzoni, B. Bosch, D. Bartrés-faz, J. Arnold et al., Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects, NeuroImage, vol.101, pp.390-403, 2014.
DOI : 10.1016/j.neuroimage.2014.06.075

M. J. Kempton, T. S. Underwood, S. Brunton, F. Stylios, A. Schmechtig et al., A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: Evaluation of a novel lateral ventricle segmentation method, NeuroImage, vol.58, issue.4, pp.1051-1059, 2011.
DOI : 10.1016/j.neuroimage.2011.06.080

K. K. Leung, J. Barnes, G. R. Ridgway, J. W. Bartlett, M. J. Clarkson et al., Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease, NeuroImage, vol.51, issue.4, pp.1345-1359, 2010.
DOI : 10.1016/j.neuroimage.2010.03.018

K. K. Leung, M. J. Clarkson, J. W. Bartlett, S. Clegg, C. R. Jack et al., Robust atrophy rate measurement in Alzheimer's disease using multi-site serial MRI: Tissue-specific intensity normalization and parameter selection, NeuroImage, vol.50, issue.2, pp.516-523, 2010.
DOI : 10.1016/j.neuroimage.2009.12.059

K. K. Leung, J. Barnes, M. Modat, G. R. Ridgway, J. W. Bartlett et al., Brain MAPS: An automated, accurate and robust brain extraction technique using a template library, NeuroImage, vol.55, issue.3, pp.1091-1108, 2011.
DOI : 10.1016/j.neuroimage.2010.12.067

K. K. Leung, G. R. Ridgway, S. Ourselin, and N. C. Fox, Consistent multi-time-point brain atrophy estimation from the boundary shift integral, NeuroImage, vol.59, issue.4, pp.3995-4005, 2011.
DOI : 10.1016/j.neuroimage.2011.10.068

M. Lorenzi, N. Ayache, G. B. Frisoni, and X. Pennec, LCC-Demons: A robust and accurate symmetric diffeomorphic registration algorithm, NeuroImage, vol.81, pp.470-483, 2013.
DOI : 10.1016/j.neuroimage.2013.04.114

URL : https://hal.archives-ouvertes.fr/hal-00819895

M. Lorenzi, N. Ayache, and X. Pennec, Regional flux analysis for discovering and quantifying anatomical changes: An application to the brain morphometry in Alzheimer's disease, NeuroImage, vol.115, pp.224-234, 2015.
DOI : 10.1016/j.neuroimage.2015.04.051

V. Magnotta, G. Harris, N. C. Andreasen, D. S. O-'leary, W. T. Yuh et al., Structural MR image processing using the brains2 toolbox, Computerized Medical Imaging and Graphics, vol.26, issue.4, pp.251-264, 2002.
DOI : 10.1016/S0895-6111(02)00011-3

I. B. Malone, D. Cash, G. R. Ridgway, D. G. Macmanus, S. Ourselin et al., MIRIAD???Public release of a multiple time point Alzheimer's MR imaging dataset, NeuroImage, vol.70, pp.33-36, 2013.
DOI : 10.1016/j.neuroimage.2012.12.044

D. S. Marcus, T. R. Olsen, M. Ramaratnam, and R. L. Buckner, The extensible neuroimaging archive toolkit, Neuroinformatics, vol.5, issue.1, pp.11-34, 2007.
DOI : 10.1385/NI:5:1:11

G. Mckhann, D. Drachman, M. Folstein, R. Katzman, D. Price et al., Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease, Neurology, vol.34, issue.7, p.939, 1984.
DOI : 10.1212/WNL.34.7.939

M. Modat, G. R. Ridgway, Z. Taylor, M. Lehmann, J. Barnes et al., Fast free-form deformation using graphics processing units, Computer Methods and Programs in Biomedicine, vol.98, issue.3, pp.278-284, 2010.
DOI : 10.1016/j.cmpb.2009.09.002

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Ourselin, A. Roche, G. Subsol, X. Pennec, and N. Ayache, Reconstructing a 3D structure from serial histological sections, Image and Vision Computing, vol.19, issue.1-2, pp.25-31, 2001.
DOI : 10.1016/S0262-8856(00)00052-4

URL : https://hal.archives-ouvertes.fr/cea-00333669

B. Patenaude, S. M. Smith, D. N. Kennedy, and M. Jenkinson, A Bayesian model of shape and appearance for subcortical brain segmentation, NeuroImage, vol.56, issue.3, pp.907-922, 2011.
DOI : 10.1016/j.neuroimage.2011.02.046

R. Pierson, H. Johnson, G. Harris, H. Keefe, J. S. Paulsen et al., Fully automated analysis using BRAINS: AutoWorkup, NeuroImage, vol.54, issue.1, pp.328-336, 2011.
DOI : 10.1016/j.neuroimage.2010.06.047

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827877

M. Reuter, H. D. Rosas, and B. Fischl, Highly accurate inverse consistent registration: A robust approach, NeuroImage, vol.53, issue.4, pp.1181-1196, 2010.
DOI : 10.1016/j.neuroimage.2010.07.020

M. Reuter, N. J. Schmansky, H. D. Rosas, and B. Fischl, Within-subject template estimation for unbiased longitudinal image analysis, NeuroImage, vol.61, issue.4, pp.1402-1418, 2012.
DOI : 10.1016/j.neuroimage.2012.02.084

J. M. Schott, C. Frost, J. L. Whitwell, D. G. Macmanus, R. G. Boyes et al., Combining short interval MRI in Alzheimer???s disease, Journal of Neurology, vol.17, issue.9, pp.1147-1153, 2006.
DOI : 10.1007/s00415-006-0173-4

J. M. Schott, J. W. Bartlett, N. C. Fox, and J. Barnes, Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid A??1-42, Annals of Neurology, vol.6, issue.6, pp.825-834, 2010.
DOI : 10.1002/ana.22315

J. G. Sled, P. Zijdenbos, and C. Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, vol.17, issue.1, pp.87-97, 1998.
DOI : 10.1109/42.668698

S. M. Smith, A. Rao, N. De-stefano, M. Jenkinson, J. M. Schott et al., Longitudinal and cross-sectional analysis of atrophy in Alzheimer's disease: Cross-validation of BSI, SIENA and SIENAX, NeuroImage, vol.36, issue.4, pp.1200-1206, 2007.
DOI : 10.1016/j.neuroimage.2007.04.035

N. J. Tustison, B. B. Avants, P. Cook, Y. Zheng, A. Egan et al., N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, vol.29, issue.6, pp.1310-1320, 2010.
DOI : 10.1109/TMI.2010.2046908

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071855

K. Van-leemput, F. Maes, D. Vandermeulen, and P. Suetens, Automated model-based tissue classification of MR images of the brain, IEEE Transactions on Medical Imaging, vol.18, issue.10, pp.897-908, 1999.
DOI : 10.1109/42.811270

G. Verbeke and G. Molenberghs, Linear Mixed Models for Longitudinal Data, 2000.
DOI : 10.1007/978-1-4612-2294-1_3

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach, Lecture Notes in Computer Science, vol.5241, pp.754-761, 2008.
DOI : 10.1007/978-3-540-85988-8_90

URL : https://hal.archives-ouvertes.fr/inria-00280602

V. L. Villemagne, S. Burnham, P. Bourgeat, B. Brown, K. Ellis et al., Amyloid ?? deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study, The Lancet Neurology, vol.12, issue.4, pp.357-367, 2013.
DOI : 10.1016/S1474-4422(13)70044-9

B. T. Wyman, D. J. Harvey, K. Crawford, M. Bernstein, O. Carmichael et al., Standardization of analysis sets for reporting results from ADNI MRI data Alzheimers Dement, pp.1-6, 2012.

P. Yushkevich, B. B. Avants, S. R. Das, J. Pluta, M. Altinay et al., Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: An illustration in ADNI 3 T MRI data, NeuroImage, vol.50, issue.2, pp.434-445, 2010.
DOI : 10.1016/j.neuroimage.2009.12.007