
�>���G �A�/�, �?���H�@�y�R�k�y�j�8�d�N

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�R�k�y�j�8�d�N

�a�m�#�K�B�i�i�2�/ �Q�M �k�9 �6�2�# �k�y�R�d

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�J�v�Q�+���`�/�B���H �A�M�7���`�+�i �G�Q�+���H�B�x���i�B�Q�M �m�b�B�M�; �L�2�B�;�?�#�Q�`�?�Q�Q�/
���T�T�`�Q�t�B�K���i�B�Q�M �6�Q�`�2�b�i�b

�>�û�H�Q�[�b�2 �"�H�2�i�Q�M�- �C���M �J���`�;�2�i���- �>�2�`�p�2 �G�Q�K�#���2�`�i�- �>�2�`�p�û �.�2�H�B�M�;�2�i�i�2�- �L�B�+�?�Q�H���b

���v���+�?�2

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�>�û�H�Q�[�b�2 �"�H�2�i�Q�M�- �C���M �J���`�;�2�i���- �>�2�`�p�2 �G�Q�K�#���2�`�i�- �>�2�`�p�û �.�2�H�B�M�;�2�i�i�2�- �L�B�+�?�Q�H���b ���v���+�?�2�X �J�v�Q�+���`�/�B���H �A�M�@
�7���`�+�i �G�Q�+���H�B�x���i�B�Q�M �m�b�B�M�; �L�2�B�;�?�#�Q�`�?�Q�Q�/ ���T�T�`�Q�t�B�K���i�B�Q�M �6�Q�`�2�b�i�b�X �a�i���i�B�b�i�B�+���H ���i�H���b�2�b ���M�/ �*�Q�K�T�m�i���i�B�Q�M���H
�J�Q�/�2�H�B�M�; �Q�7 �i�?�2 �>�2���`�i �U�a�h���*�P�J �k�y�R�8�V�- �P�+�i �k�y�R�8�- �J�m�M�B�+�?�- �:�2�`�K���M�v�X ���?���H�@�y�R�k�y�j�8�d�N��

https://hal.inria.fr/hal-01203579
https://hal.archives-ouvertes.fr


Myocardial Infarct Localization using
Neighbourhood Approximation Forests

H�elo•�se Bleton, J�an Margeta, Herv�e Lombaert, Herv�e Delingette, and Nicholas
Ayache

INRIA Sophia-Antipolis, Asclepios Team, France

Abstract. This paper presents a machine-learning algorithm for the
automatic localization of myocardial infarct in the left ventricle. Our
method constructs neighbourhood approximation forests, which are trained
with previously diagnosed 4D cardiac sequences. We introduce a new set
of features that simultaneously exploit information from the shape and
motion of the myocardial wall along the cardiac cycle. More precisely,
characteristics are extracted from a hyper surface that represents the
pro�le of the myocardial thickness. The method has been tested on a
database of 65 cardiac MRI images in order to retrieve the diagnosed
infarct area. The results demonstrate the e�ectiveness of the NAF in
predicting the left ventricular infarct location in 7 distinct regions. We
evaluated our method by verifying the database ground truth. Following
a new examination of the 4D cardiac images, our algorithm may detect
misclassi�ed infarct locations in the database.
Keywords: Machine Learning, Neighbourhood Approximation Forests,
myocardial infarction, wall thickness.

1 Introduction

Cardiac imaging is now routinely used for evaluating speci�c anatomical and
functional characteristics of hearts. For instance, the localization of cardiac in-
farcts requires contrast agent injection and a thorough examination of the my-
ocardial wall thickness and its motion [3][4]. We propose to assist and automate
this process with a system that automatically categorizes the localization of in-
farcts in the left ventricle. We exploit information from existing databases of
4D cardiac image sequences, that already contain the infarct localization from
previously diagnosed patients. In such context, 4D images should be compared
in an image reference space.

One way to represent the population is with statistical anatomical atlases
[2] that are constructed by combining all available subjects in a single average
reference. In this paper, we favor a representation that considers all available sub-
jects in a database. Here, we consider data that is classi�ed along their recorded
infarct localization. For this purpose, multi-atlas methods [5] could be used.
However, they require costly image registrations [6]. Retrieval systems, instead,
�nd images of subjects in a database that are close to a query image [7]. The
information on the infarct location of the retrieved subjects may be relevant for
establishing diagnoses in previously unseen subjects.



Content based retrieval systems require the notion of distances between im-
ages [10]. They have been used in other areas such as neuro-images [11] or en-
domicroscopy [8]. However, to the best of our knowledge, they were not applied
for categorizing infarct locations in 4D cardiac images. This raises the question
on how distances between 4D images should be de�ned. We suggest to learn
this metric between subjects that belong to di�erent categories of infarct lo-
cations, using the Neighborhood Approximation Forests algorithm (NAF) [11].
This machine-learning approach approximates distances between new query im-
ages and images in a database, via an a�nity matrix between subjects. Decision
forests have already been applied for processing medical images such as a fully
automatic segmentation of the left ventricle [9]. Our method builds upon simple
shape and motion features derived from binary segmentation that are fast to
compute and based on a hyper surface representing the myocardial thickness
along the cardiac cycle.

The contribution of this paper is the use of a distance learning approach for
automatically categorizing the location of cardiac infarcts from 4D cardiac im-
age sequences. We tested several features that are extracted from a novel hyper
surface representation of the thickness pro�le. The next section describes our lo-
calization method, and is followed by our results that evaluates the performance
of the proposed features. We discuss on the di�erences found in our results and
elaborate on future improvements of our infarct localization method.

2 Method

Our localization method consists of categorizing automatically the location of
cardiac infarcts via a retrieval approach based on the Neighborhood Approxi-
mation Forests (NAF). We now suggest feature representations that are speci�c
for the localization of infarcts in 4D cardiac image sequences. The underlying
assumption is that infarction a�ects the myocardial shape and motion since com-
plex phenomena are often involved, such as wall thickening or chamber dilation
[3].

2.1 Neighbourhood Approximation Forests

The NAF consists of an ensemble of binary decision trees designed for the pur-
pose of clustering similar cardiac sequences together. Its automatic learning of
image neighborhoods provides the capability of querying a training dataset of
images,I , by retrieving the most similar images given a previously unseen im-
age,J . Further details of the algorithm are described in [11]. Three phases are
required: feature extraction, training and testing stages. We now describe how
to apply them for the speci�c problem of locating infarcts in 4D images.

The learning process aims at �nding the optimal shape and motion features
for predicting the category of infarct location. Our training dataset contains 4D
cardiac image sequences, each labeled with a category of infarct location, e.g.,
infarct is in septal or lateral area. Each 4D image should have an associated
4D segmentation mask of the left ventricular muscle. In our case, each binary



mask has been cropped with a bounding box centered on the left ventricle and
oriented such that both ventricles are aligned horizontally along a left-right axis.

Feature extraction A surface representing the thickness pro�le over the car-
diac cycle is �rst extracted from 4D myocardial masks. The barycenter of the
left ventricle mask is computed for each slice and each frame of the 4D mask.
Rays are subsequently casted from the barycenter to the exterior of the mask,
as illustrated on Fig. 4. The ray-binary mask intersection is used to evaluate
the myocardial thickness at each angle. As a result, the myocardial thickness
h(s; t; � ) is represented by a hyper surface, where the spatial coordinates are the
corresponding slices, the frame time t, and the angle� .

The thickness pro�le is smoothed out by a Gaussian kernel �lter (with a
width of 0:4) to reduce possible segmentation errors. The thickness pro�le is
also normalized in order to adjust its thickness values in a standardized common
scale, such that the average thickness value over the 4D hyper surface is 0 and
the standard deviation 1.

a) Thickness extraction. b) Thickness hyper surface.

Fig. 1. a) Thickness extraction along the myocardial mask in red, red circle shows
the mask barycenter, h denotes the thickness and � the angle of a casted ray. b) 4D
thickness pro�le at end-diastolic and end-systolic frames, parameterized by h(s; t; � ),
with the slice s, the frame time t, and the angle � .

As the space and temporal resolutions are speci�c to each image, point sam-
pling should be normalized. The slice positions is normalized between 0 at the
apex, and 1 at the left ventricular base. The frame timet is normalized between
0 at diastole, and 1 at the end of the cardiac cycle. The angle is kept between 0
and 2� , starting from a reference in the lateral wall.

Below, we describe groups of featuresf (I ) extracted from the thickness pro-
�les. In the following cases,h(s; t; � ) denotes the thickness, sampled on the slice
s, the frame time t and the angle� .
Feature 1: Raw thickness. The pro�le constitutes the input features for each
tree:

f 1(I ) = f h(si ; t j ; � k )gi;j 2 [0;1] ; and � 2 [0 � ;360 � ]:

In other words, given a 4D imageI , this feature representation consists of
the list of surface heights. This should characterize infarcts as a function of my-
ocardial thickness over space and time.



Feature 2: Raw thickness and thickness di�erences. This feature repre-
sentation provides the raw thickness pro�le and the absolute di�erence of thick-
nesses sampled between the framet0 and each framet:

f 2(I ) = f h(si ; t j ; � k ); jh(si ; t0; � k ) � h(si ; t j ; � k )jgi;j 2 [0;1] ; and � 2 [0 � ;360 � ]:

This feature is similar to the �rst feature representation, however, the thick-
ness di�erence is added. This should characterize infarcts as discrepancies in
myocardial thickness over space and time.

Training phase During this phase, the forest is trained: parameters of each
tree are �xed using the training set I and the distance measurement� (I n ; I m )
between each pair of images (I n ,I m ). The distance metric � (I n ; I m ) for a regres-
sion problem is de�ned as follows:� (I n ; I m ) = j� a(I n ) � � a(I m )j, where � a(I n )
denotes the angle that corresponds to the infarct location, as illustrated on Fig.
3a. A set of visual featuresf (I n ) is computed from each training image I n .
Along the forest construction, each tree tests a randomized subset off (I n ). A
tree is grown by �nding at each nodep, the optimal split of the dataset into two
branches (I pLeft ; I pRight ) that best separates the incoming imagesI p in compact
clusters. In the best case, cardiac images with similar infarct location should
end in one leaf. In other words, the best threshold� p is found for each selected
feature f m p . The couple (parametersmp,threshold � p) are stored at each node
awaiting for the testing phase.

Obtaining the most compact partioning of I p is also equivalent to maximizing
the information gain G (Eq. 1) at node p:

(mp; � p) = arg max
m;�

G(I p; m ; � ); (1)

where m is the set of features, and� the set of potential thresholds, and

G(I p; mp; � p) = C(I p) �
jI pRight j

jI p j
C(I pRight ) �

jI pLeft j
jI p j

C(I pLeft ); (2)

where the set of imagesI pLeft of the left child node is de�ned by the test
function � (mp; � p) applied on the images of the parent node, and similarly
for the de�nition of the right node. Moreover, the compactness is de�ned by

C(A) =
1

jAj2
P

I i 2 A

P
I j 2 A � (I i ; I j ), and jAj is the number of images within a

subset A. More details on the training phase of the NAFs can be found in [11].

Testing phase During the following phase, one testing cardiac image travels
across all tree nodes using the trained decisions, starting from the root node
and ending in one leaf. Each leaf contains the training images for which similar
decisions were taken. Consequently, when a testing image reaches a �nal leaf, it
is considered a neighbor of the training images already present in the same �nal
leaf. An a�nity matrix is built by repeating this neighborhood approximation
for each tree by storing the a�nities between all testing images and the training
images, as illustrated in Fig. 2.



Fig. 2. The NAF testing phase. The trained NAF determines the most similar
images (in the bottom/ in red) of the testing cardiac sample (in the top of each tree/
in green), by performing trained tests at each node.

Indeed, the NAF algorithm keeps a record of the most similar cardiac se-
quences to a testing imageJ j in a similarity matrix W , where rows correspond
to training images, and columns to testing images. For each tree,W (i; j ) is in-
cremented whenJ j reaches the leaf node that also includes the training image
I i [11]. In this paper, the resulting a�nity matrix determine the angle, where
the myocardial infarct is approximatively located (refer to Fig. 3). The predicted
angle on a testing imageJ j , is based on the resulting similarity matrix such that:

� a(J j ) =
P

i W (i;j ) � a ( I i )P
i W (i;j )

3 Results

3.1 Dataset and settings

Cardiac images of patients with coronary artery disease and a left ventricle
infarction were randomly selected from the De�brillators to Reduce Risk by
Magnetic Resonance Imaging Evaluation database (DETERMINE) included in
the Cardiac Atlas Project (CAP) [1]. 65 4D left ventricular masks were obtained
with the software CAP Client, made available by the Left Ventricular Segmenta-
tion Challenge conducted for the Statistical Atlases and Computational Models
of the Heart Workshop (STACOM) in 2011. Each mask is annotated by addi-
tional clinical information including the infarct location (anterior-septal, ante-
rior, anterior-lateral, lateral, inferior-lateral, inferior, inferior-septal).

3.2 Evaluation of infarct localization

We validated our approach by retrieving the neighbours and the predicted angle
by forming a training set and a testing set from the expert-annotated database.
Some of the cardiac images are duplicated to obtain balanced class distribution
in the training set. Therefore, the database consists of 115 images that groups 7
types of infarct location together.

The 10-fold cross validation technique is used for estimating the accurate
performance of our classi�er. The set of 115 images is partitioned into 10 subsets:
1 subset is randomly chosen as the testing set while the 9 remaining subsets form



the training set. This method is repeated 10 times by varying the testing subset.
Each infarct location in the dataset is labeled by an angle according to Fig.
3a. Left-ventricular regions cover large areas, spanning up to 60� . Following the
testing phase of the NAF method, the predicted angle of each testing image is
compared to the expected angle of infarction.

We proposed two types of features to locate the infarct of unseen cardiac
images. Our forest is composed of 100 trees where the maximal depth is 20.
Results associated with each type of features are shown in Fig. 3b, where the
average angle of each category is reported.

a) Sections of the left ventricular
wall [12].

b) Results on average prediction

of infarct location.

Fig. 3. a) Sections of the myocardial wall related to an angle, ranging from 0 � to 360� .
b) Results and comparison with the expected angle for each category: anterior (A),
anterior-septal (AS), inferior-septal (IS), inferior-posterior (IP), inferior-lateral (IL),
lateral (L), anterior-lateral (AL).

With the �rst type of features, which characterizes the thickness of the my-
ocardium, the localization of seven areas lead to average angular errors between
5� and 48� , which are below the maximal span of each areas of 60� . However, the
inferior-posterior area lead to an average error of 175� . This leads us to examine
each 4D image labeled with inferior-posterior infarct, revealing potentially mis-
classi�ed infarct location, as seen on Fig. 4. The main drawback of this �rst type
of features is that only the myocardial wall shape is taken into account, notably,
only the wall thinning in the infarct area or the wall thickening in the opposite
wall of the infarct. Indeed, considering only the minimal thickness is not enough
to localize an infarct, as the thickness of the myocardial wall changes over time
and possibly gets thinner at end-systole than in the infarct area.

Motivated by the previous results, motion information is combined to shape
information in the features 2 by considering the di�erence of thicknesses over
time. Following a myocardial infarction, the cardiac wall may not necessarily
change over the cardiac cycle whereas the wall thickness of a healthy heart
changes over time. Consequently, our second feature type that captures the
thickness di�erences over time infarcts should indicate infarct as areas where
the thickness is not changing over time.



With the second type of features, the infarct location is predicted with an
average angular error of up to 52� from the expected angle in all categories. This
remains below the maximal span of each areas of 60� . Our algorithm is able
to locate the infarct location within the right area even if there are potential
sources of error in the dataset. For instance, the database ground truth may be
corrupted by misaligned binary masks if the septum is not perfectly located at
180� as illustrated on Fig. 3a.

a) Infarct locations in the database and the predicted locations with our method.

b) Misclassi�ed infarct locations in the database.

Fig. 4. The white arrows represent the database ground truth, whereas the red arrows
show the infarct location that was predicted with our method. In Fig. 4b, our algo-
rithm underlined a possible misclassi�cation as the infarct seems located in another
myocardial area.

4 Conclusion

We used our machine learning neighbourhood-based algorithm for detecting the
infarct in the left ventricular wall. We propose 2 types of features for improving
the infarct localization where shape and motion information have been taken
into consideration. These features have been extracted from a hyper surface that
represents the thickness pro�le and has been designed along the cardiac cycle.
We learnt to approximatively locate the infarct by retrieving the corresponding
angle from the undiagnosed images. The most relevant infarct location is based
on an a�nity matrix. Our approach may be relevant in assisting clinical diagnosis
of left ventricular infarct and may sometimes detect misclassi�ed infarct in a
database. Future work will focus on evaluating local wall deformation �elds to



better localize the infarct over the 3D cardiac volume. We could also consider
to collect the myocardial thickness from 4D cardiac images instead of binary
masks.
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