Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carriere 1 Steve Oudot 1 Maks Ovsjanikov 2
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : Persistence diagrams (PDs) play a key role in topological data analysis (TDA), in which they are routinely used to describe topological properties of complicated shapes. PDs enjoy strong stability properties and have proven their utility in various learning contexts. They do not, however , live in a space naturally endowed with a Hilbert structure and are usually compared with non-Hilbertian distances, such as the bottleneck distance. To incorporate PDs in a convex learning pipeline, several kernels have been proposed with a strong emphasis on the stability of the resulting RKHS distance w.r.t. perturbations of the PDs. In this article, we use the Sliced Wasserstein approximation of the Wasserstein distance to define a new kernel for PDs, which is not only provably stable but also discriminative (with a bound depending on the number of points in the PDs) w.r.t. the first diagram distance between PDs. We also demonstrate its practicality, by developing an approximation technique to reduce kernel computation time, and show that our proposal compares favorably to existing kernels for PDs on several benchmarks.
Type de document :
Communication dans un congrès
ICML 2017 - Thirty-fourth International Conference on Machine Learning, Aug 2017, Sydney, Australia. pp.1-10, 〈http://proceedings.mlr.press/v70/〉
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01203716
Contributeur : Steve Oudot <>
Soumis le : lundi 13 novembre 2017 - 10:12:42
Dernière modification le : jeudi 7 février 2019 - 14:32:24
Document(s) archivé(s) le : mercredi 14 février 2018 - 12:53:03

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01203716, version 2

Citation

Mathieu Carriere, Steve Oudot, Maks Ovsjanikov. Sliced Wasserstein Kernel for Persistence Diagrams. ICML 2017 - Thirty-fourth International Conference on Machine Learning, Aug 2017, Sydney, Australia. pp.1-10, 〈http://proceedings.mlr.press/v70/〉. 〈hal-01203716v2〉

Partager

Métriques

Consultations de la notice

211

Téléchargements de fichiers

194