Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, Epiciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Conference papers

Biased estimators on Quotient spaces

Nina Miolane 1 Xavier Pennec 1 
1 ASCLEPIOS - Analysis and Simulation of Biomedical Images
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Usual statistics are defined, studied and implemented on Euclidean spaces. But what about statistics on other mathematical spaces, like manifolds with additional properties: Lie groups, Quotient spaces, Stratified spaces etc. How can we describe the interaction between statistics and geometry? The structure of Quotient space in particular is widely used to model data, for example every time one deals with shape data. These can be shapes of constellations in Astronomy, shapes of human organs in Computational Anatomy, shapes of skulls in Palaeontology, etc. Given this broad field of applications, statistics on shapes -and more generally on observations belonging to quotient spaces- have been studied since the 1980's. However, most theories model the variability in the shapes but do not take into account the noise on the observations themselves. In this paper, we show that statistics on quotient spaces are biased and even inconsistent when one takes into account the noise. In particular, some algorithms of template estimation in Computational Anatomy are biased and inconsistent. Our development thus gives a first theoretical geometric explanation of an experimentally observed phenomenon. A biased estimator is not necessarily a problem. In statistics, it is a general rule of thumb that a bias can be neglected for example when it represents less than 0.25 of the variance of the estimator. We can also think about neglecting the bias when it is low compared to the signal we estimate. In view of the applications, we thus characterize geometrically the situations when the bias can be neglected with respect to the situations when it must be corrected.
Document type :
Conference papers
Complete list of metadata

Cited literature [12 references]  Display  Hide  Download

https://hal.inria.fr/hal-01203805
Contributor : Project-Team Asclepios Connect in order to contact the contributor
Submitted on : Wednesday, September 23, 2015 - 6:36:50 PM
Last modification on : Saturday, June 25, 2022 - 11:16:57 PM
Long-term archiving on: : Tuesday, December 29, 2015 - 9:41:27 AM

File

Miolane_Pennec_GSI2015.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Nina Miolane, Xavier Pennec. Biased estimators on Quotient spaces. Geometric Science of Information. Second International Conference, GSI 2015., Oct 2015, Palaiseau, France. pp.130-139, ⟨10.1007/978-3-319-25040-3_15⟩. ⟨hal-01203805⟩

Share

Metrics

Record views

391

Files downloads

371