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Abstract. In the context of the female pelvic medicine, non-invasive Magnetic Resonance Imag-
ing (MRI) is widely used for the diagnosis of pelvic floor disorders. Nowadays in the clinical
routine, diagnoses rely largely on human interpretation of medical images, on the experience of
physicians, with sometimes subjective interpretations. Hence, image correlation methods would
be an alternative way to assist physicians to provide more objective analyses with standard pro-
cedures and parametrization for patient-specific cases. Moreover, the main symptoms of pelvic
system pathologies are abnormal mobilities. The FEM (Finite Element Model) simulation is a
powerful tool for understanding such mobilities. Both the patient-specific simulation and the im-
age analysis require accurate and smooth geometries of the pelvic organs. This paper introduces
a new method that can be classified as a model-to-image correlation approach. The method
performs fast semi-automatic detection of the bladder, vagina and rectum from MR images for
geometries reconstruction and further study of the mobilities. The approach consists of fitting a
B-spline model to the organ shapes in real images via a generated virtual image. We provided
e�cient, adaptive and consistent segmentation on a dataset of 19 patient images (healthy and
pathological).

Keywords: B-spline, MR images, pelvic organs detection, virtual image correlation

1 Introduction

Female pelvic disorder such as the organ prolapse is a common problem that occurs especially
as a woman ages: 20% to 30% of women of all ages combined su↵er from severe degree of
prolapse [1] and more than 60% of women over 60 years of age are a↵ected by this pathology [2].
These problems are related to the mobility of female pelvic system where a physician’s diagnosis
is usually based on his meaningful analysis of medical images (e.g. dynamic MRI of a patient
breathing or pushing). The subjectivity related to human perception or medical experience can
not be avoided and can cause variability in the diagnoses. The advantages of involving numerical
models relies not only in visualization, but also in quantitative analysis on patient-specific medical
images, which can make the diagnoses more objective. Besides that, recent works [3–5] have
attested the feasibility and have provided promising results of finite elements model simulations
for evaluating the pelvic organs mobility. In order to perform patient-specific FEM simulation
or image analysis, the reconstruction of an accurate and smooth geometry of the pelvic organs
is required, and it should be e�cient. In this paper, we propose a semi-automatic method for
organ shapes detection, which is an important preliminary step for further studies and modelling.
Not yet can this method provide direct diagnoses, but it is an e�cient assistance with common
procedure for analysing medical images of patients, especially the pathological cases.
Existing work [6] has introduced an algorithm creating thick surfaces of hollow pelvic organs,
using periodic B-splines and o↵sets. This modelling was a step between segmentation and physical
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modelling. The reconstruction of geometry was based on a cloud of points resulted from pre-
segmentation. This modelling was a step between manual segmentation, needed by the method,
and physical modelling.
More generally, the surface modelling of patient-specific organ geometries has become an increas-
ingly important issue for computer-assisted simulation. This objective is usually achieved in two
steps: segmentation and geometric modelling. Regarding the first step, a multitude of algorithms
have been proposed to convert original image data to segmented ones (labelled voxels). From
Level Set Methods [7, 8] to Graph Cuts [9], algorithms have achieved promising results for seg-
mentation and grouping. Then for the latter, Marching Cubes [10] algorithm has become the
standard approach to generate surface meshes from a scalar field. Despite of their success, these
methods are all pixel-based approach, which do not provide directly smooth and accurate con-
tour. However these aspects are required for further processing such as extraction of displacement
along contour and 3D model reconstruction.
Another modelling method, ”model-to-image correlation”,is carried out in two steps:
1. Initialization of a fine model in terms of geometry and topology
2. Deformation of the model for fitting the original image by means of cost function minimiza-

tion
Such idea as matching deformable model to images was introduced by Kass et al. [11]. In this
approach an “Active contour (snakes)” model is driven by internal and external “Forces” to fit
the patterns in images. This idea was improved and developed by a host of techniques [12, 13].
In [14], a deformable model was described as a variation of degrees of freedom and coupled with
probabilistic modelling. Segmentation results were hence based on some prior knowledge. Brigger
et al. [15] introduced powerful B-Spline functions for building the snake model, which required
less degrees of freedom and produced higher continuity. Li et al. [16] proposed an external force
based on vector field convolution for the active contours to deal with the image noises and the
shape concavities.
With the classical active contour, the external force is merely guided by the pixel intensity of the
image. As a consequence, the algorithm does not produce desired results if the points situated in
a blur background or far from the optimal positions. Generally, one needs to perform additional
processing on the original image to promote the right deformation of snakes (as an example
applying gradient operator to enhance the edges). Moreover, these algorithms require a good
initialization of the models, which is not simple to create. Chan et al. [20] proposed a model
to deal with this problem. An implicit curve model can detect contours without gradient edge-
detector and the initial curve can be placed anywhere in the image. However, we are introducing
a new B-spline like method which is more consistent with our numerical approach.
Practically in these ill-posed problem, the choice of the number of the degrees of freedom is not
trivial. More degrees of freedom enable to create a finer geometry descriptor; however, a finer
regularization of these variables is also required.
Such model-based approach is widely used for medical image processing [17–19] and it is well
suited in our case, whereas in this paper, we introduce a new model-to-image approach. The
idea is to propose a method that combines the method of ”Active Contour” with the “Virtual
Image” approach, the latter was firstly introduced by [21, 22]. Our approach relies on several
contributions which are: (1) A fast and semi-automatic organ geometries modelling is proposed,
which is helpful for our further study of the mobility and modelling. (2) A virtual image is
generated from the mathematical model, in order to avoid the local optimum problem and the
pre-processing. Based on the virtual image, we use a cost function to find the best correlation
between the virtual image and the real one. Finally, the model-to-image correlation can be written
as an energy minimization problem, consistent with a typical image registration framework [23–
25]. Concerning the medical imaging, the correlation method is denoted as image registration.
The objective is to find the spatial correspondence of two medical images, one of which is the
virtual image generated from the model in our case. Similar with the principle in [24, 25], we
fit the model to image spatially by measuring the similarity between the virtual image and the
medical image. (3) Besides the aspect of the image preprocessing, our algorithm consists of a
more general framework including the active contour [11, 15]. For example, the cost function can
be replaced by the one of the active contour. The adaptive refinements and decimations of control
points can be included thanks to the flexibility of B-spline model, for the purpose of adjusting the
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number of the degrees of freedom during optimization. (4) A problem in multi-organ detection
is to deal with the unwanted inter-penetration between two di↵erent structures which is not
favourable for the mechanical simulation. We use a signed distance map to compute an energy
term quadratically increasing when organs approached towards each other.

Medical Image

Model

Cost Function

Optimization

Virtual Image
Real Image
(Static/Dynamic MRI)

f = Integration of energy
term on the model domain

Mapping from DOF (p1, p2, ... ,pn) to a domain pi = pi + dpi

Fig. 1. The overview of our method (Compared to the image correlation, the deformable image is replaced by
a virtual image generated repeatedly from the model. The cost function measures the similarity between the
two images in our method.)

A general view of our approach is presented in the MRI and Correlation Method Section. The
geometric model is described in the B-spline Model Section. The generation of virtual image
is detailed in the Virtual Image Section. In the Optimization Section, we present how to cou-
ple the two aspects in a common energy minimization framework. The Results Section reports
our experimental results on a data set of 19 patient images. Finally, we give a conclusion and
perspectives of our work in the last section.

2 MRI and Correlation Method

In the point of view of computation, the proposed approach can be formulated as an optimization
procedure. Four key parts are involved in such optimization (see Figure 1):
– input data (3D static and 2D dynamic MR images of the patient)
– a mathematical model with variables to be optimized (B-spline Model Section)
– a cost function which links the model to the input data (ex., integration on the domain of

the model) (Cost Function Formulation Section)
– an optimizer which finds the optimal values of the parameters to minimize the cost function

(Optimization Section)
The input experimental image data consist of T2-weighted static and dynamic MRI of the female
pelvic system. The use of these images of volunteers for our research was approved by the National
Ethics Committee (Comité d’Ethique de la Recherche en Obstétrique et Gynécologie CEROG
2012-GYN-06-01-R1). The static MR images are obtained in the three planes (sagittal, axial
and coronal), which provide information on the 3D anatomical organization. The dynamic MR
images (or Cine MRI) refer to a temporal sequence of 2D images, which are widely used for
diagnosing pelvic sagging pathologies [26].
For our study, these 2D dynamic images were obtained in the same midline sagittal plane of
the patient during pushing, for a given frequency (about 1.2 fps). The choice of this middle
plane keeps a standard procedure in the clinical routine because it’s the most representative of
the organ shapes and motions. In order to increase the image contrast of pelvic organs, a gel
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had been injected into the vaginal cavity and the rectum while patient drank liquid to highlight
the bladder. In this way, pelvic organs were easily observable during MRI acquisition. We were
interested in 2D segmentation of the three organs (bladder, vagina and rectum), for which both 2D
sagittal static and dynamic MR images were used (spatial resolution from 0.47 to 1.17 mm/pixel,
see Figure 2).

Bladder

Vagina

Rectum

Uterus

Pubis

Sacrum

Fig. 2. Sagittal dynamic MR image (spatial resolution = 1.17mm/pixel, 256*256 pixels)

Our registration procedure is a multi-scale optimization in two steps: an a�ne transformation of
the model for the coarse registration and a B-spline deformation for the finer registration. For the
first step, our model is defined by the 6 degrees of freedom (DOF) of the a�ne transformation
applied on the initial contour (a circle-like curve whose center and radius are predefined by the
user). For the second step, as we use a B-spline model for the description of geometry, the control
points are considered as DOF of the mathematical model. The optimization procedure updates
the positions of control points to find the minimum of the cost function. This part ensures the
flexibility and quality of our model. Moreover, we use an adaptive B-spline model to adjust the
number of control points during the optimization. This is hoped to be a powerful improvement:
integrating the insertion and removal of control points with respect to the maximum error along
the contour. Due to the feature of multi-level framework, the registration is more stable to reach
the desired minimum and with a faster convergence. However, a major problem occurs when the
contours of organs intersect each other, which leads to divergence of the algorithm. This will also
create unwanted artifacts for the simulation. We avoid the problem by adding a collision energy
term that prevents the inter-penetrations.

3 B-spline Model

The optimization process can be described as iterative updates of its degrees of freedom (DOF).
As we deform the geometric model, we optimize the DOFs that describe the geometrical shape.
The geometric model is considered as a mapping from DOFs to the geometry. In this paper,
we introduce two mappings: (I) an a�ne transformation for the coarse registration and (II) a
cubic B-spline as the shape descriptor for the deformable registration. The control points are
the researched DOFs (see [27] for definitions). Thus similar with the typical image registration,
our model-to-image registration method is also based on a multi-scale framework. Concretely the
geometries of the relevant organs are represented in an analytical manner. In order to generate
a virtual image in the neighbourhood of the contour, the DOF vector V is mapped into a set of
discrete points in the neighbourhood of the contour, which presents a narrow band containing
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the contour, denoted by ⌦ in this paper. These points form a bended grid over ⌦ as the domain
of integration (details presented in the Virtual Image Section). A position on the curve is defined
using the curvilinear coordinate u based on the parametric curve.
For modelling the geometries of the three organs, we used 2D B-spline of 3-degree that is a
classical geometric modelling tool. In our case, each organ is modelled by a closed B-spline. A
uniformly spaced knot vector U = {u0, . . . , um

} is used to define the basis functions of p-degree,
denoted as N

i,p

: u 2 [0, 1] ! [0, 1]. The N
i,p

(u) is the ith p-degree piecewise polynomial which
is a linear combination of two (p� 1)-degree basis functions, defined as:

N
i,p

(u) =
u� u

i

u

i+p

� u

i

N
i,p�1(u)

+
u

i+p+1 � u

u

i+p+1 � u

i+1
N

i+1,p�1(u). (1)

Hence the basis function is computed recursively as the degree p increases. Each interval [u
i

, u

i+1]
defines a span of the B-spline curve. The multiplicity of a knot determinates the continuity of
the curve on this point. Geometrically each knot u

i

in the vector U is mapped into a breakpoint
of the curve. Generally the knot vector is setted from 0 to 1 and with the multiplicity p+1 at the
first and the last knot to form a clamped curve. Figure 3 shows an example of the basis functions
of degree 0, 1, 2 and 3 defined on a uniform knot vector with 16 knots. Due to the multiplicity
of the knots u0, u1, u2 and u3, the first three basis functions of low degree are identically zero.
Thus with no loss of generality, N3 and N4 (defined on spans of distinct knots) are used for
illustration.
Each organ is presented by a parametric B-spline curve M : u 2 [0, 1] ! M(u) 2 R2. Each
position on the curve can be calculated by the value of u:

M(u, [P0,P1, · · ·Pl

]) =
lX

i=0

N
i,p

(u)P
i

(2)

where [P0,P1, · · ·Pl

] are the l + 1 control points. However, the first and last control point of
each curve are attached to form a closed curve: M(0) = M(1) = P0 = P

l

. Hence our model is
analytical and of C2 continuity except at the end point. Under this configuration, the l control
points are supposed to be the degrees of freedom in the registration algorithm. Another advantage
of the B-spline is its locality property which means each control point is highly independent. The
change of one’s position merely influences a certain spans of the contour (see Figure 4).
In addition, for the a�ne transformation step, we have the relevant mapping M

A

, 6 DOFs of
which are evaluated in this coarse step: [T11, T12, T21, T22, Tx

, T

y

]. Suppose M0 is the mapping
function corresponding to the initial B-spline curve, and C the center, then the mapping function
of the a�ne transformation becomes:

M
A

(u, [T11, T12, T21, T22, Tx

, T

y

])

=


T11 T12

T21 T22

�
(M0(u)�C) +


T

x

T

y

�
+C. (3)

4 Cost Function Formulation

4.1 Virtual Image

In order to define an appropriate cost function, we introduce a virtual image to form the first
energy term. A so-called virtual image is generated from the model for calculation of a cost
function which finds the best correlation with the real image. This virtual image is created in the
narrow band ⌦ along the contour with a certain width (see Figure 6(b,c)). The value of gray levels
in this narrow band image is chosen to be similar to the ones in the real image (gray level MR
image). This idea was first introduced and proved by Semin et al. [21] to detect fibre-like objects in
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...

...
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...

degree 0

degree 1

degree 2

degree 3

Fig. 3. The B-spline basis functions

digital images. This approach was developed then by Réthoré et al. [22]. However both the width
value and the gray levels are not necessary to be exactly close to the real image. Let us consider
the one-dimension case as an example. To detect the o↵set of a discrete 1-D sinusoidal signal, we
can define a ”virtual” smooth and analytical sinusoid of which the o↵set is optimized to find the
best correlation between these two signals. The optimal value of o↵set can be obtained with a
range of values chosen close to the magnitude of the discrete signal, thus the parametrization of
the analytical signal is not required to be precisely equal with the discrete signal. The analytical
sinusoid presents an approximate intensity profile depicting how the discrete signal evolves in
one direction. Similarly, in 2D manner considering a discrete image of an object, we create such a
virtual image by associating an intensity profile at each point on the object border with a certain
width to simulate the variation of gray level from foreground to background (ex. decreasing
gradually from white to black). We modelled the object with a constant intensity profile which
implies an implicit assumption that the variation of gray levels in the direction perpendicular to
the object border propagates equally in the direction of the tangent. There may be concerns for
certain cases where image data do not provide the homogeneous property for an organ; however,
in practice, a single organ has a similar intensity in our images.

The intensity profile of the virtual image is defined by a levelset function L : v 2 R ! R where
v is the distance from a position X to the contour (see Equation 4). In [22], the choice of the
levelset intensity was discussed, a bell-shaped function was used to approach the intensity profile
in the real image. The choice of sinusoidal function is kept in this paper for its simplicity and
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Fig. 4. Cubic B-spline curve - Change of the point 3 influences 4 spans of the curve

the consistency is proved (see Figure 5). In the application, the band width and the o↵set of the
levelset function are to be adjusted for a better performance.
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Fig. 5. Choice of the levelset function with di↵erent configuration

L(v) =

8
>>>>><

>>>>>:

A

max

if v < 0,

A

min

+
A

max

�A

min

2
⇤ (1 + cos(

⇡v

⌧

))

if 0  v  ⌧,

A

min

if v > ⌧.

(4)
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In Equation (4), ⌧ is the estimated width of narrow band ⌦ and A

max

, A
min

the gray levels
inside and outside organ. The value of A

max

and A

min

are chosen by clicking on the foreground
and background in the real image. The virtual image I

v

is then computed on the discrete points
cloud over the narrow band of the organ border. The discrete points form actually a bended grid,
a position X(u, v) of which is defined in the curvilinear coordinate system based on tangent and
normal direction of the contour. The virtual image value I

v

(X) is computed in the analytical
way (see Equation 5) so that the grid spacing size can even be much smaller than the pixel
spacing in real image. Unlike the virtual image, the real one has a pixel-wise square grid, we
should then project X and evaluate real image value I

r

(X) using a bi-cubic interpolation (see
Figure 6(a)). Also for these reasons, the virtual image is considered ”virtual” and provides sub-
pixel information compared to the real one. Furthermore, gray level values are merely evaluated
in its definition domain ⌦ instead of the whole domain of the real image (see Figure 6(b)).

I

v

(X) = I

v

(u, v) = L(v) (5)

The positions X can be evaluated by the analytical formulation of the parametric geometric
model (see Equation 6). Suppose a parametric curve : M : u 2 R ! R2.

X(u, v) = M(u) + v

�!
N(u) (6)

Thus, the computation of the virtual image is more natural and direct with a parametric model
M but can be applied to any type of model. The cost function related to this virtual image for
each organ can be computed with:

E

image

([P0,P1, · · ·Pl

])

=

Z

X2⌦(Band)

[I
r

(X)� I

v

(X)]2 d⌦. (7)

Thanks to the virtual image, our method is exempt from image preprocessing and based merely
on reliable original data (no need of preprocessing the images). The method requires less compu-
tation and in a mathematical point of view, the virtual image can be considered as a smoothing
of gradient field which avoid local optimum in this non-convex problem.

4.2 Collision Term

To avoid the inter-penetration of the analytical functions defining the contours of organs during
deformable registration, we introduce a collision term to penalize the movement of DOFs (control
points). The second energy term is computed by using signed distance maps D : X 2 R2 !
D(X) 2 R. Each contour retains its own distance map describing how far a position in the image
domain is from the contour: D

bl

for the bladder, D
va

for the vagina and D
re

for the rectum.
The collision energy term is defined by a quadratic function with regard to the distance D,
F : D 2 R ! R+:

F(D) =

8
<

:

A

max

if D < ��,

A

max

4�2 (D � �)2 if ��  D  �,

0 if D > �.

(8)

where � defines the width of the possible intersection zone associated with the contour, so that
it penalises the possible intersections when one contour happen to approach the narrow band of
another closely. As shown in Figure 2, the vagina is at the middle of the three organs, so the
bladder and the rectum are never in contact. We use the following equations to compute the
collision term for each contour:

E

Bl

=

Z

X2⌦

Bl

(Band)

F(D
va

(X)) d⌦
Bl

(9)

E

V a

=

Z

X2⌦

V a

(Band)

[F(D
bl

(X)) + F(D
re

(X))] d⌦
V a

(10)

E

Re

=

Z

X2⌦

Re

(Band)

F(D
va

(X)) d⌦
Re

. (11)
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ReΩ
Bl
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v

v

control point

a set of discrete points for integration

real image grid (pixels)

Iv(X) = L(v)

Ir(X)

(bicubic 
interpolation)

a b

c

Fig. 6. (a) Illustration of the virtual image computing (b) Virtual image generated on narrow bands ⌦ of the
three organs (c) Virtual image superimposed on the real one.

As the virtual image, F is used as a levelset function for computing the energy associated distance
map. The map for each organ is redefined once at each iteration. Thus for example, the value
of F(D

va

(X)) for a given position X is obtained directly by projecting X onto the map of the
vagina. We do not recompute the distance D

va

(X) for each discrete point at the same iteration.
Finally these two energy terms are summed to form a global energy term as the cost function.

E

global

= E

image

+ ↵E

collision

(12)

E

image

is to be associated with each organ. E
collision

is to be replaced by E

Bl

, E
V a

and E

Re

respectively. The coe�cient ↵ is chosen empirically during tests, the same value is used for the
images of the same spatial resolution.

5 Optimization

In our registration procedure, optimization is the step connecting the cost function (energy)
and the model (Figure 1). It updates iteratively the DOFs of the model. For such a non-linear
optimisation problem, the algorithm is based on gradient. We opt for a gradient descent algo-
rithm in this paper, which is suitable for optimizing the position and the number of the control
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Fig. 7. Contour detection with the cost functions. (a) Three small circles initialized by user with 10 control
points for each (b) Positions after an a�ne transformation (c) Final contours with optimal number of control
points. (d,e,f) Illustration of the cost function metrics E

image

along the organ contours: [I
r

(u, v) � I

v

(u, v)]2,
with u evolves in the tangent direction of the contour and v in the direction perpendicular to the contour (see
Virtual Image Section).
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points, and for controlling the convergence with regards to the adaptive refinement step. How-
ever, the Newton-Raphson method can also be computed similarly, in Figure 1, the Optimization
component can be flexibly replaced by another optimizer.
The searched direction of the DOFs depends on the derivatives of the cost function. Let T

i

be
one of the DOFs in Equation 3, the derivative is computed as follows:

@E

image

@T

i

=

Z

X2⌦(Band)

�2[I
r

(X)� I

v

(X)] · @Iv
@X|{z}
A

· @X
@T

i|{z}
B

d⌦ (13)

As mentioned in the B-spline Model Section, our model is optimized via a multi-scale registration
procedure. At the initialization step, user defines a point at the inside of each organ as the
center of B-spline curve. We have tested a new initialization, while asking the user to put the
point approximatively at the zone where the portion of organ is larger. We have observed a
better increase of the initial contours at the first steps. Concerning the number of the control
points, thanks to the adaptive refinement, that we consider as one of our major contributions,
we think it may not have a real importance because the points are to be added and deleted
automatically after. And we give 10 by default. Then a circle-like B-spline with 10 control points
is created for each organ, which is a basic and simple one-click initialization (see Figure 7(a)).
For the coarse registration, the parameters of a�ne transformation (Equation 3) are optimized
(search direction computed by Equation 13). In Figure 7(b), one can observe that after the a�ne
transformation, the three circle-like shapes are transformed to ellipse-like ones which give an
approximate initialization of the detection procedure. Following the first step, a finer registration
is applied using deformations based on B-spline model. Thus the positions of control points are
DOFs to be updated to fit the organ contours by means of minimizing a cost function:

@E

image

@P

i

=

Z

X2⌦(Band)

�2[I
r

(X)� I

v

(X)] · @Iv
@X|{z}
A

· @X
@P

i|{z}
B

d⌦ (14)

The partial derivative A is the gradient of virtual image which can be computed by the deriva-
tive of the levelset function (Equation 4). The partial derivative B is the mapping function
(Equation 2) which means B-spline interpolation function in this case. Thanks to the power of
analytical formulation, the required derivatives are simple to compute. In addition, the chain
rule of derivation shows the independence of geometric model and the image energy computed
by the di↵erence between the virtual image and the real one. Hence one can use the virtual im-
age approach with di↵erent geometric representations (or mapping function). The collision term
E

collision

can be computed in a similar way.
Due to the nature of gradient descent, after certain iterations, it shows a phenomenon of local
minimum (the energy does not evolve). We use this phenomenon as the criterion for adding
control points. Figure 8 illustrates the cost function with respect to the iterations. A test of local
minimum is performed automatically for every 10 iterations. Let E

max

be the maximum value
of the cost function during this 10 iterations, E

min

the minimum value and E0 the initial value:

kE
max

� E

min

k
E0

< ✏. (15)

If Equation 15 is satisfied, the optimization is supposed to reach a local minimum (low variation
of the cost function), then the curve is refined where the cost function needs to be reduced. The
refinement step is treated automatically by inserting and removing control points based on the
evaluation of cost function along the contour (details can be found in the next two paragraphs).
Once the curve is refined, the optimization passes the local stability and continues to find the best
correlation as shown in Figure 8. This test and the adaptive refinement are performed repeatedly
until the refinement can no more a↵ect the cost function. In order to show this point, in Figure 8,
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we set the optimization to 800 iterations and it can be observed that after certain iteration, the
insertion and removal (simplification) of the points become periodic, however the cost function is
finally invariant. Practically for the stop condition test, we can elevate the number of iterations
from 10 to 40 by using the criteria of Equation 15. At each iteration, the variance of the cost
function during the last 40 iterations is tested. As any further iteration or refinement does not
provide any change, the algorithm reaches its convergence. Finally in Figure 8, the optimal
positions at iteration 404 are found.

Moreover, by integrating insertion and removal of control points, our method can refine adaptively
the geometric model with respect to images. The major advantage is that our B-splines fit
properly the forms even in case of local aberrant curvature changes and avoid useless control
points for description of the curve. This feature makes our method capable of a balance between
model complexity and simplicity of optimization.

The insert of control points does not change the B-spline curve by using its geometric algorithms.
Every time when the gradient descent algorithm reaches its local minimum detected by a thresh-
old of variation of the cost function, we refine the curve by subdividing the knot interval where
appears the maximum value of cost function. On the other hand, when two control points ap-
proach each other within a distance threshold, one is deleted for eliminating inter-cross of curve.
In Figure 7(d,e,f), we illustrate the distribution of cost function along the contour at the three
stages (initialization, after a�ne transformation and the final position). The values of the cost
function decrease significantly during the optimization. Moreover, the distance from a position
on the contour to the organ border can be indicated by evaluating the metric map along contour.
By zooming inside the contour, higher values occur when it is far from the real image border,
which can be the indication for refinement.

bladder
vagina
rectum
re nement

Iterations

Cost function (Energy)

local minimum -> re nement

stop iteration

275 404

351

simpli cation

Iteration=99
(before re nement)

Iteration=100
(after re nement)

Iteration=404

Fig. 8. Illustration of the convergence of the gradient descent method.
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Fig. 9. Measurement of the detection error between a correct contour (green) and an arbitrary contour (red):
(a) Hausdor↵ distance = length of s (b) Average curve distance = average length of s (c) Dice coe�cient =
s/(s+ t).

a b c

Fig. 10. Illustration of results: green curve shows the manually segmented organ as the reference, red curve
shows the result of semi-automatic algorithm, yellow line shows the Hausdor↵ Distance. (a) Witness patient
(1.17mm/px) (b) Patient with endometriosis (0.49mm/px) (c) Patient with prolapse (1.17mm/px).

exception

a b c

exception exception

Fig. 11. Di↵erent exceptions of detection caused by unwanted e↵ect in images: (a) As rectum may be folded
somewhere, wrinkles appear in image as black rings (b) The injected gel and intrinsic materia may produce
blur parts in image (c) Intrinsic materia show spots in rectum.
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6 Results

We validate our method of segmentation on a database of 19 patient images. The types of these
patients include the witness, the prolapse and the endometriosis (a pathology of the pelvic system
related to the hypo-mobility). Each patient data set consisted of a T2-weighted MRI of the pelvic
system We used for this 2D segmentation test the image in the midline sagittal plane of each
patient which is representative and useful for further study of the pelvic mobility. By the end of
each optimization process, a Medical Doctor (MD) manually corrected the shape of organs by
modifying the positions of control points so that the final curves and the contours of organs, to
the MD opinion, were well fitted. These final curves were used as the reference in our validation.
In Figure 10, we illustrated the detection and the validation for each type. Then numerically
we compared the curves before manual corrections with the final ones by evaluating error with
several metrics: Dice Coe�cient (DC), Hausdor↵ Distance (HD) (see [28] for the definition)
and Average Curve Distance (ACD). Figure 9 shows the computation of these metrics by using
the right contour (green) and an arbitrary contour (red, and manually created to show a larger
error). In this paper, suppose that F is the set of edge points on the semi-automatically segmented
region and G is one of the manually segmented region. The ACD values represent the average
(L1 � norm) of distances on millimeter between the edge points on the manually segmented
organ and the automatically detected organ. The minimum distance for the i

th point in F to the
set F is dFG

i

, thus the ACD values can be computed as in Equation 16. The number N
F

and N

G

were chosen to make sure that approximately an edge point was used by pixel.

ACD

FG =
1
N

F

N

FX

i=1

d

FG

i

,

ACD

GF =
1
N

G

N

GX

i=1

d

GF

i

ACD = (ACD

FG +ACD

GF )/2 (16)

Similarly the HD is considered as a L

1 � norm. In addition, for the DC values, a higher Dice
value assesses a better segmentation quality. On the 19 patients data, we got a similarity of
over 90% for bladder and 80-90% for vagina and rectum especially since the ends of these two
organs are di�cult to define. In Figure 11, we illustrated some exceptions of the detection due
to the unwanted e↵ect presented in the images. Generally the bladder is well highlighted under
acquisition, while as the injected gel can exit the cavity with the patient pushing, blurs and
incertitude will occur in the image for the vagina and the rectum (see Figure 11(b)). Because of
the complexity of the shape, crease will occur in the 2D plane of the rectum (see Figure 11(a))
and intrinsic material generates spots in the rectum in the image (see Figure 11(c)). All these
unwanted e↵ects would make the algorithm limited in certain cases. In these cases, the algorithm
detected contours. However, the contours are not the anatomical contours of the organs. The
quantitative results of our tests are shown in Table 1.
An example of registration (Figure 8) was done on a quad-core desktop computer running at 3.10
GHz, with 16G memory. The computational time for one image is 53.8 seconds without counting
the time consumed on updating the graphical user interface (GUI) bu↵er and reading/writing
files and images (which took about 2.5 minutes). In this example, 4800 (400*12) discrete points
were generated in the narrow band of each contour and it took about 400 iterations.

7 Conclusion and Perspectives

The correlation between geometric models and images remains a major challenge in the applica-
tions of medical imaging and computer-assisted diagnoses. In this paper, we present a B-spline
based model-to-image registration approach for segmenting pelvic organs using MR images. The
fitting procedure was guided by the minimization of an energy. The quality of fitting was ensured
by a virtual image correlation approach and adaptive refinement. Thanks to the optimization
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Patient (19) Endometriosis (8) Prolapse (8) Witness (3) Average

Bladder
DC(%) 91.4 89.5 95,1 91.2
HD(mm) 9.46 10.87 5.74 9.46
ACD(mm) 1.35 2.23 0.90 1.65

Vagina
DC(%) 93.0 83.8 94.8 89.4
HD(mm) 6.14 11.34 3.02 7.84
ACD(mm) 0.89 1.80 0.67 1.24

Rectum
DC(%) 83.4 82.2 78.6 82.2
HD(mm) 31.12 25.91 33.59 29.32
ACD(mm) 5.04 4.77 5.66 5.02

Table 1. Summary table for results of the error measures between manual and automatic segmentation - The
three sub-tables present results of each organ in di↵erent pathological cases.

process the B-spline curves used to model the organs are registered on each image, without
any intersection. The models provide a C

2 continuity (smooth property) for the contours. This
method was developed and tested for segmentation of organs in 2D images.
The first perspective of this work is to assess the approach with more data and particularly with
pathological images. We plan to lead a small clinical test to evaluate the interest of this new image
processing technique in the diagnostic routines. Another possible use of this technique is tracking
the motion of pelvic organs in dynamic MR images. The quantification of the displacements and
the localization of the pathological zones related to the suspension devices between the organs
could thus be possible, which could help in early diagnostic of pelvic organ prolapse.
Finally, despite of the fact that the performance of the method is shown merely on 2D situation,
it will be interesting to extend this algorithm for 3D reconstruction of multi-organ based on 3D
images under the same framework. This would be more valuable for the purpose of patient-specific
medical simulation.
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