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Abstract: GPGPUs and other accelerators are becoming a mainstream asset for high-
performance computing. Raising the programmability of such hardware is essential to enable users
to discover, master and subsequently use accelerators in day-to-day simulations. Furthermore, tools
for high-level programming of parallel architectures are becoming a great way to simplify the ex-
ploitation of such systems. For this reason, we have extended NT2 – the Numerical Template Tool-
box - a C++ scientific computing library which can generate code for SIMD and multi-threading
systems in a transparent way. In this paper, we study how to introduce an accelerator-based pro-
gramming model into NT2 to allow developers to reap the benefits of such an architecture from
a simple, Matlab -like code. After a brief description of the NT2 framework, we explain how
our accelerator programming model has been designed and integrated in a pure C++ library. We
conclude by showing the applicability and performance of this tool on some practical applications.
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Méta-programmation et programmation multi-niveaux pour
GPGPU

Résumé : La programmation sur les accélérateurs tels que les GPGPU est devenue un atout
majeur pour le calcul haute-performance. Une amélioration de la programmabilité de ces com-
posants matériels est essentielle pour permettre aux utilisateurs de maîtriser ces accélérateurs
afin d’être capable d’écrire un code plus performant. Les outils permettant une programmation
haut niveau des architectures parallèles sont de nos jours un moyen très efficace pour simplifier
l’exploitation de telles machines. Dans ce contexte, nous avons étendu la bibliothèque de cal-
cul scientifique nommée NT2 – the Numerical Template Toolbox - capable de générer des codes
pour machines à processeurs vectoriels et multi-coeurs de manière transparente. Dans ce rapport
technique, nous étudions des modèles de programmation pour accélérateurs afin de les intégrer
dans la bibliothèque NT2 . L’objectif est de permettre aux développeurs de profiter des capac-
ités des machines parallèles de manière simple avec une interface similaire à Matlab . Après
une brève description de NT2 , nous expliquons comment nous avons intégré notre modèle de
programmation dans une bibliothèque C++. Pour conclure, nous présentons les performances
de notre système sur certaines applications du domaine.

Mots-clés : C++ , méta-programmation, programmation générique, CUDA, programmation
multi-niveaux
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1 Introduction

Developing large applications in a simple, fast and efficient way has always been an issue for
software developers. As computing hardware complexity rose with the advent of SIMD, multi-
processor, multi-core systems and more recently accelerators like GPUs [22] or Intel Xeon Phi [5],
software design methodologies did not undergo the same amount of changes. This complicates
the exploitation of such hardware in mainstream applications.

Designing Domain Specific Languages (or DSL ) has been presented as a solution to these
issues. As DSLs allow solutions to be expressed in their programming idiom with a level of ab-
straction equivalent to the problem domain, the maintainability and quality of code is increased.
One of the most popular examples is Matlab ™ which provides a large selection of toolboxes that
allow a direct expression of high-level algebraic and numerical constructs in a easy-to-use imper-
ative language. In this scope, Domain Specific Embedded Languages (or DSELs ) [17, 30]
are languages implemented inside a general-purpose, host language [8]. without the requirement
of a dedicated compiler or interpreter as they are designed as a library-like component [7, 31].

NT2 – The Numerical Template Toolbox – is such a DSEL using C++ template meta-
programming [1] to provide a Matlab -inspired API while supporting a large selection of par-
allel architectures and keeping a high level of expressiveness [13]. NT2 was designed to support
architectural features like SIMD extensions and multi-core programming [29]. However, the sup-
port for accelerators like GPGPUs was limited as GPU kernel compilers where unable to process
NT2 C++ 11 based implementation of C++ based DSEL .

In this paper, we present a new extension for NT2 that takes care of such accelerators,
especially CUDA based GPUs through multi-stage programming [12] (orMSP ) for linear algebra
and elementwise problems. MSP consists in doing multiple compilation phases allowing for type-
safe program generation. Our contributions include:

• A programming model supporting both implicit or explicit data transfers to and from
GPGPUs with a simple user interface

• An adaptable strategy to generate CUDA kernel directly from a single C++ source file
containing NT2 statements

• The integration of this kernel generator with existing CUDA libraries like cuBLAS or
MAGMA.

The purpose of this system is to provide the user some leeway on how to distribute the data
between the host and device through a simple mechanism. As having a perfect cost model for
load balancing is very complex to put in place and costly, letting the user provide some insight
on data locality is beneficial.

After reviewing the concurrent state of the art software libraries (section 2), we introduce
NT2 , its programming model (section 3) and how it has been adapted to support GPU compu-
tation. We then describe the kernel generator process and how it integrates with the existing
library (section 4). Finally, we present benchmarks assessing the generated code quality (section
5) and conclude on the future work regarding NT2 and accelerators.
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4 Baboulin et al.

2 Related Works

Software libraries for GPGPU computing try to simplify the new programming paradigm brought
by many-core based systems. The general trend followed in recent years by C++ libraries is
to provide a high-level interface through template meta-programming techniques. This goal
is reached by providing device containers with architecture-aware generic parallel algorithms
and/or a code generation based process. This approach differs from what can be seen with
OpenACC [32] or Halide [23] as it is a DSEL based approach and does not rely on language
extensions or pragmas. We will give a detailed explanation of both type of libraries that support
OpenCL/CUDA or both.

Thrust [16] is a header only library providing a similar interface to the C++ Standard
Template Library. Its high-level interface is based on meta-programming and traits to provide
efficient parallel skeletons that can run on either CPU or GPU. Container locality is expressed
through an explicit container declaration limiting the abstraction but allowing for easier trans-
fers between host and device. Locality for functions is defined by default for device vectors and
can be extended with tag dispatching. Overall, it is a well rounded utility library which can be
combined with CUDA Toolkit libraries such as CUBLAS, CUFFT and NPP. However it lacks of
code generation features and does not support OpenCL.

VexCL [10] is an expression template library for OpenCL/CUDA. It provides a high-level
generic interface that is suitable for both back-ends with static parameters defined within a
DSEL for linear algebra. The expression template mechanism allows for code generation by lazy
evaluation of vectors and elementary operations within the AST. Similarly to Thrust, it provides
STL-like functions on containers that have a defined locality. It is also possible for the user to
define custom functions on device that will be dynamically generated for CUDA. However, the
transform used for the generation process requires a unique data locality limiting hybrid algo-
rithms.

ViennaCL [25] is also an expression template library for OpenCL/CUDA. This library
strictly follows the uBLAS programming interface and STL like algorithms for easier integration
with other softwares. It has implementations for BLAS kernels and high-level solvers for sparse
and dense computation that provide good performance. Through the mechanism of expression
templates it can evaluate basic linear algebra operations with operator overloading. ViennaCL
focuses more on OpenCL due to the necessity for separate compilation with CUDA limiting its
support through the OpenCL language. It is however possible to generate CUDA code with
ViennaCL at runtime.

Boost.Compute [20] is a header only C++ library based on the OpenCL standard. Similar
to other libraries, it manages device memory through a designated container. It provides an
interesting concept of future for asynchronous copy on the device allowing for more versatility.
Boost.Compute also supports closures and adaptable structures for device. Similarly to thrust,
it is a well rounded library based on OpenCL to simplify the coding process on accelerators. It
however lacks support for numerical analysis and cannot generate CUDA code.

Eigen [15] is a popular library to solve linear systems using expression templates. It should
be able to support accelerator code with CUDA by writing Eigen code in a .cu file. It however
does not provide any high-level interface or special containers for GPU computing. Eigen does
not support OpenCL.

Inria
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SciPAL [18] is an expression template library with a DSEL for dense and sparse linear
algebra. It focuses mainly on recognizing gemm calls by parsing the AST and regular operations
on containers. Its code generation process for CUDA kernels is done mostly by explicitly writing
the code in callable objects. The code generation process is then done at runtime for non-BLAS
kernels. SciPAL does not support OpenCL.

Feature Thrust VexCL ViennaCL Boost.C NT2

Matlab API − − − − X
AST optimization − X X X X
Device Arrays X X X X X
Cuda code gen X X − − X
OpenCL code gen − X X X −
parallel skeletons X X − X X
CUBLAS support X − X − X
Static code gen − − − − X
dense LA solvers − − X − X
sparse LA solvers − − X − −

Figure 1: Feature set comparison between NT2 and similar libraries

In Figure 1, we compare features between NT2 and the previously described libraries. We
did not include SciPAL since the code is not available, and Eigen as it does not have any real
support for code generation or a device API.

The purpose of the previously described libraries is usually to provide a wrapper over the C++
language for GPGPU computing. For this reason, the DSELs based on expression templates or
Boost.Proto are usually lightweight and consist mostly of overloading elementary operations for
containers. The code generation phase then ends up doing a dynamic compilation of the CUDA
code/OpenCL kernel which adds a significant overhead on small sized or low arithmetic intensity
problems.

Furthermore, as mentioned in Section 1, it is not possible to compile a NT2 source code
with nvcc even with the latest version (7.0 RC). To address these issues, we have added a two
step compilation in NT2 using a serialization mechanism based on Boost.Serialization. Before
describing this process, we will first detail the execution model for GPGPU computing in NT2 .

3 NT2 Execution Model

NT2 [13] is a numerical computing C++ library implementing a subset of the Matlab language
as a DSEL . NT2 simplifies the development of data-parallel applications on a large selection of
architectures currently including multi-core systems[29] with SIMD extensions[14]. Simply put,
a Matlab program can be converted to NT2 by copying the original code into a C++ file and
performing minor cosmetic changes (defining variables, calling functions in place of certain oper-
ators). NT2 also takes great care to provide numerical precision as close to Matlab as possible,
ensuring that results between a Matlab and an NT2 code are sensibly equal.

Internally, NT2 is designed to leverage the well known Expression Templates C++ idiom to
build at compile time a flexible representation of the abstract syntax tree of any C++ expression
containing at least one NT2component. This compile-time tree is then transformed in actual code
to be executed on a parallel system. Contrary to other libraries based on the same technique,
NT2 relies on Boost.Proto , an external Expression Templates system to handle the creation and
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6 Baboulin et al.

transformation of ASTs [21]. Boost.Proto allows us to replace the direct walk-through of the
compile-time AST done in most C++ DSELs by the execution of a mixed compile-time/runtime
algorithm over the predefined AST structure generated by Boost.Proto (fig. 2).

matrix x(h,w),a(h,w),b(h,w);

x = cos(a) + (b*a);

expr<assign
    ,expr<matrix&>
    ,expr<plus
         , expr<cos
               ,expr<matrix&>
               > 
         , expr<multiplies
               ,expr<matrix&> 
               ,expr<matrix&>
               >
         >(x,a,b);

+

*cos

a ab

=

x

#pragma omp parallel for
for(int j=0;j<h;++j)
{
  for(int i=0;i<w;++i)
  {
    x(j,i) = cos(a(j,i)) 
           + (  b(j,i) 
              * a(j,i)
           );
  }
}

Arbitrary Transforms applied
on the meta-AST

Figure 2: Expression Templates in NT2

Finally, the other main difference between NT2 and similar tools is the fact that architectural
specificities of the generated code are handled by an execution model based on Algorithmic
Skeletons[4]. Those skeletons simplify the extension of NT2 for various hardware by separating
the concerns of optimizing the ASt code for different type of architecture.

3.1 Basic NT2 API
The main element of NT2 is the table class. table is a template class that can be parametrized
by its element type and an optional list of settings. Instances of table behave like Matlab array
and supports the same operators and functions. NT2 covers a very large subset of Matlab func-
tionality, from standard arithmetic, exponential, hyperbolic and trigonometric functions, bitwise
and boolean operations, IEEE related functions and of course linear algebra. Listing 1 showcases
some NT2 basic features including the mapping of the colon function (:) to the _ object, various
functions, a random number generator and some utility functions like numel or size.
// Matlab : A = 1 : 1000 ;
tab le<double> A = _(1 . , 1 0 0 0 . ) ;

// Matlab : B = A + randn ( s i z e (A1) ) ;
tab le<double> B = A + randn ( s i z e (A1) ) ;

// Matlab : r = sq r t (sum( (A( : )−B( : ) ) .^2) /numel (A) ) ;
double r = sq r t (sum( sqr (A(_)−B(_) ) ) / numel (A) ) ;

Listing 1: NT2 RMSD Computation

3.2 Support for CPU/GPU execution
If the single system computation model of NT2 is rather classic, we needed a way to handle accel-
erators in a generic and extensible way. The first step is to provide a simple way to locate tables

Inria
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on either the host system or on a device. This is simply done by using a couple of settings in
the definition of NT2 table instances. Listing 2 show cases the nt2::host_ and device_ settings
that specifies if a table contains data stored on the host memory or device memory.

// Generates a host t ab l e by de f au l t
tab le<double> A( o f_s i z e (1 e3 , 1 e3 ) ) ;

// Generates a host t ab l e e x p l i c i t l y
table<double , host_> A2( o f_s i z e (1 e3 , 1 e3 ) ) ;

// Generates a dev i ce t ab l e
table<double , device_> D( o f_s i z e (1 e3 , 1 e3 ) ) ;

// Generates a dev i ce t ab l e on dev i ce #2
table<double , device_> D2( o f_s i z e (1 e3 , 1 e3 ) , on_device (2 ) ) ;

Listing 2: NT2 host and device specifications

Note that a special function on_device can be used to specify on which device the memory
must be allocated in the case where multiple devices are available.

Semantic of operations between host and device tables is quite straightforward as they will be
carried on the proper memory segment of each table. When mixing tables of different location,
memory transfers are implicitly performed. This means that assigning a host table to a device
table is equivalent to performing a CUDA memory transfer. This can be used for example to
simplify interaction with existing GPU kernels as shown in listing 3. As streams are no assigned
to tables, this transfer will be synchronous.

A copy function is also available to perform asynchronous memory transfers when a non-
default stream is given.

// X i s a 1e3 x 1e3 matrix f u l l o f 1 .
tab le<double> X = ones (1 e3 , 1 e3 ) ;

// Trans fe r to dev i ce
table<double , device_> Y = X;

// cuBLAS d i r e c t c a l l
cub lasDsca l ( Y. s i z e ( ) , 5 . , Y. data ( ) , 1 . ) ;

// Trans fe r back to host
X = Y;

Listing 3: NT2 interaction with cuBLAS

This semantic of transfer by assignment is a classical way of performing such operation
transparently. It as been used by tools like Thrust or VexCL and have been proved to be easy
enough for the user while allowing for fine grain performance tuning.

3.3 Code generation for device computation

Computations on the device occur in two situations within NT2 : when all operations are car-
ried out with tables set on device or if operations are carried out on any tables as long as the
amount of memory to process is larger than a threshold based on the total amount of data to
transfer. In those cases, the NT2 statement applied to those tables has to be translated into an
equivalent CUDA kernel and called. Contrary to some other solutions, NT2 performs this kernel
code generation at build-time by providing a model based on CMake macro to generate all the
required calls to our kernel generation system. Once generated, the resulting .cu is linked with
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8 Baboulin et al.

the remaining application’s binary and called directly. This choice of performing multi-stage
code generation at build time was motivated by the desire to limit the overhead of runtime code
generation, thus ensuring that all calls to a given kernel are efficient. The second advantage of
this system is that it’s fairly extensible to future situation including code generation for OpenCL
devices, C code generation for embedded systems, distributed systems etc . . .

Listing 4 demonstrates how high-level NT2 code can be applied on device-enabled table.

tab le<double> X,Y,Z ;
table<double , device_> A, B, C;

// f u l l dev i ce execut ion
A = B + C ∗ s i n (B) ;

// mixed execut ion
X = Y / ( Z + A ) ;

Listing 4: NT2 device/host mixed code

In the first case, as all tables are defined on the device, no extra memory transfer is performed.
In the second case, the mixed use of both host and device tables cause the library to starts various
data stream between host and device, hence overlapping transfers and computations. If the size
of the resulting table was too small, the same code would have defaulted to run in multi-core
mode.

3.4 MAGMA Integration
NT2also provides a direct high-level integration of MAGMA [28] for handling most linear algebra
tasks as shown on listing 5 for the linsolve.

tab le<f l o a t > A, B, X;
table<f l o a t , device_> dA, dB, dX;

X = l i n s o l v e (A,B) ;
dX = l i n s o l v e (A,dB) ;

Listing 5: NT2 interface to MAGMA kernels

Calls to linsolve can mix device and host tables. The implementation of such kernels will
take care of transferring the strictly required data over the device and to perform transfer back
to the host only if the result is assigned to a host table. Most MAGMA kernels are mapped onto
ther Matlab equivalent API and handle the same sets of optional behaviors.

3.5 Kernel optimizations
As complex programs often feature multiple statements involving NT2 tables, it may become
hard in some cases to maintain a high level of performance as the cost of transfers between
statements may become significant. To locally solve this issue, NT2 provides a function called
tie that allows for library-based loop fusion as depicted in Listing 6.

In this scenario, the single assignment statement between call to tie will generate exactly
one call to a single CUDA kernel composed of the fusion of the two loop nests over the variable
A and X. Every table will be transferred in a single sequence of streaming operations and a single
kernel will be executed on the device.

Inria



Meta-programming and Multi-stage Programming for GPGPUs 9

tab le<T> bs ( table<T> const& B, table<T> const& C,
, tab le<T> const& Y, table<T> const& Z
)

{
table<T> A( B. extent ( ) ) , X( Y. extent ( ) ) ;

t i e (A,X) = t i e ( B + C ∗ s i n (B)
, Y / ( Z + A )
) ;

r e turn X;
}

Listing 6: NT2 merged kernels

4 Device Code Generation
As described in section 2, code generation for accelerators in C++ is based on Meta-programming
techniques. This process is however limited by the fact that C++ does not natively support
language extensions for runtime code generation and program execution [26]. Creating a multi-
stage paradigm is therefore necessary to remove the runtime cost of compiling CUDA code.

4.1 Multi-stage programming in C++

MSP is usually applied by adding specific language extensions to trigger a new compilation
phase. As an example, MetaOcaml [27] is a multi-stage language based on Ocaml [19] with three
basic constructs for runtime code optimization.

More recent adoptions of MSP for parallel computing include techniques like Lightweight
modular staging (LMS) [24] in Scala, Language Virtualization [3] (base on LMS) or Terra [11]
using language extensions for HPC in Lua . LMS is similar to Meta-programming techniques in
C++ applied to the Domain Engineering Method for Reusable Algorithmic Libraries [6] method-
ology on which NT2 is build. Language Virtualization is an interesting concept but it is limited
by the need to make the DSEL identical to the stand-alone language. This greatly increases the
complexity of the generation process and makes it hard to extend.

The way we useMSP is not based on language extensions but on a methodology we developed.
It is possible to create a multi-stage compilation of a program using the representation described
in Section 3. In C++ , we base this process on doing a compilation phase with an incomplete
link to generate only an object file. It is then possible to use a demangling tool like cppfilt
or nm to decode the C++ ABI names. Each demangled symbol will correspond to the internal
C++ representation with a complete prototype of the incomplete function. By parsing this
representation we can generate the CUDA/OpenCL kernel code with a corresponding host code
to complete the link phase. Figure 3 describes this multi-stage process. To benefit from this
paradigm, it is necessary to include a two stage compilation that cannot be deployed in a header
only library. It is also important to develop a readable intermediate representation that can be
easily parsed when demangled.

4.2 Multi-stage programming tool for NT2

A specific tool called symbol/code converter (Figure 3, Part 3) coupled with a serialization process
was developed as an add-on to NT2 to solve the issues described previously. The serialization pro-
cess to solve the readability of the abstract representation is based on Boost.Serialization .
This representation is similar to the expression-template AST based on Boost.Proto that is

RR n° 8780



10 Baboulin et al.

1. source code 2. object file 7. executable

4. device kernel 3. symbol/code converter 6. object file

5. C++ host code

compile link

demangle

generate

associate

generate

compile

Figure 3: Two phase compilation for device code generation

parsed by the C++ compiler. This enables us to get the semantic information of the container
described in section 3 like its data locality, data type or matrix shape. It is however not possible
to have run-time informations like the container size.

The role of symbol/code converter is two-fold. First, it must parse the demangled symbols
obtained. This is done with Boost.Spirit [9], a C++ library to parse expressions and gen-
erate outputs based on them. It is implemented as a DSEL using Expression templates and
Meta-programming techniques. With this library, we can generate outputs corresponding to the
semantic information of the containers and operators. Secondly, it must generate the device
and host code (Figure 3, Part 4-5) from the output generated by Boost.Spirit. In order to
achieve this, we must deserialize the abstract representation in which the semantic informations
are represented by a tag.

We will first describe the generation of the CUDA kernel. Each representation obtained from
the AST corresponds either to an elementary expression of containers such as a = b + c (or
a = b + c + d . . . ) or a sequence of operations if a fused operator (tie) is called. The parsing
is separated between the left and right hand-side of the computation. The left hand-side will
check if the expression is a terminal or an AST and generate the left part of the CUDA kernel
expression. If it is a fused operator, it will generate a sequence of left operators in the kernel.
The right hand-side will parse the operator and generate from the NT2CUDA back-end the cor-
responding operation with its parameters. Similarly, a fused operator will generate a sequence
of right-hand side.

The generation of the host code consists of creating the source file corresponding to the func-
tions with missing symbols. This amounts to adding the includes for the currents back-end, the
CUDA kernel call and streaming data if necessary. As the device locality is available in the AST
under the tag nt2 :: device_ (see section 3), it is possible to stream the data to the GPU only
if needed. Chaining non-fused operations that are on the host will obviously trigger back and
forth data transfers. The overhead generated by such a process is diminished by the streaming
and multi-stream process enabled for each operation.

We just described the key concepts of the symbol/code converter tool implemented in NT2 for
multi-stage programming. In the next section we will give concrete examples of generated kernels
from symbol/code converter in NT2 and how it can support hybrid computation. We will then

Inria
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go on to explain the Future model for device computing.

4.3 Integration in NT2

To describe the generation process, we use the Triad kernel which consists in doing a fused
multiply-add (or fma : a = b+ c ∗ d ). The resulting code in NT2 is :

// Def ine host t ab l e
table<f l o a t > A,B,C,D;

// Triad ke rne l
A = B + C∗D;

Listing 7: NT2 Triad kernel

The code in Listing 7 corresponds to Part 1 of Figure 3. During the compilation phase, the
operation in Listing 7 is replaced with a call to the CUDA transform skeleton. This skeleton
will then call the device kernel that is not implemented yet resulting in the incomplete link
sequence(Part 1-2, Listing 7). The equivalent code for transform is detailed in Listing 8. This
transform will analyze the informations on the input matrices and the architecture to decide if
it should proceed with the generation process.

tab le<f l o a t > A,B,C,D;

// Triad ke rne l r ep l a c e with transform c a l l
trans form (A, B + C∗D) ;

Listing 8: NT2 Triad transform

From there, once we compile our code and go through phase 2 of Figure 3 we obtain the
following mangled code for our transform as described in Listing 9.

U _ZN3nt215external_kernelINS_3tag10transform_ENS1_5cuda_
IN5boost4simd3tag4avx_EEEE4callIKNS_9container4viewINS1_6
table_EfFNS_8settingsEvEEEKNSB_10expressionINS4_5proto7exp
rns_10basic_exprINS6_4fma_ENSJ_7argsns_5list3INSC_ISD_KfSF
EESQ_SQ_EELl3EEENS_6memory9containerISD_fFSE_NS_8of_si
ze_ILln1ELln1ELln1ELln1EEEEEEEEEEvRT_RT0_

Listing 9: NT2 CUDA Triad mangled

We can then demangle the symbols resulting in the code described in Listing 10.

void nt2 : : externa l_kerne l<nt2 : : tag : : transform_ , nt2 : : tag : : cuda_<boost : : simd : : tag : : avx_>
>:: c a l l <nt2 : : conta ine r : : tab le<f l o a t , nt2 : : s e t t i n g s ( ) >, nt2 : : c onta ine r : : expres s ion

<boost : : proto : : exprns_ : : basic_expr<boost : : simd : : tag : : fma_ , boost : : proto : : argsns_ : :
l i s t 3 <nt2 : : conta ine r : : view<nt2 : : tag : : table_ , f l o a t const , nt2 : : s e t t i n g s ( ) >, nt2 : :
c onta ine r : : view<nt2 : : tag : : table_ , f l o a t const , nt2 : : s e t t i n g s ( ) >, nt2 : : c onta ine r : :
view<nt2 : : tag : : table_ , f l o a t const , nt2 : : s e t t i n g s ( )> >, 3 l >, nt2 : : memory : :
conta iner<nt2 : : tag : : table_ , f l o a t , nt2 : : s e t t i n g s ( nt2 : : of_size_<−1l , −1l , −1l , −1l
>)> > const >(nt2 : : c onta ine r : : tab le<f l o a t , nt2 : : s e t t i n g s ( )>&, nt2 : : c onta ine r : :
expres s ion<boost : : proto : : exprns_ : : basic_expr<boost : : simd : : tag : : fma_ , boost : : proto : :
argsns_ : : l i s t 3 <nt2 : : conta ine r : : view<nt2 : : tag : : table_ , f l o a t const , nt2 : : s e t t i n g s ( )
>, nt2 : : c onta ine r : : view<nt2 : : tag : : table_ , f l o a t const , nt2 : : s e t t i n g s ( ) >, nt2 : :
c onta ine r : : view<nt2 : : tag : : table_ , f l o a t const , nt2 : : s e t t i n g s ( )> >, 3 l >, nt2 : :
memory : : conta iner<nt2 : : tag : : table_ , f l o a t , nt2 : : s e t t i n g s ( nt2 : : of_size_<−1l , −1l ,
−1l , −1l >)> > const&)

Listing 10: NT2 CUDA Triad demangled

This code corresponds to the Boost.Proto AST in NT2 that we parse to generate the host
and device code. The architectural tag of the machine is depicted in purple in Listing 10 and
the fma computation node in red. The representation of the AST in Figure 4 corresponds to the
operation obtained from the demangled symbol that we parsed.
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=

A fma

B C D

Figure 4: Triad kernel transform AST

The generated code for the .cu file is described in Listing 11 for Kepler cards. It corresponds to
the AST representation with additional semantic information specific to the CUDA language. A
function wrapper that calls the CUDA kernel (fma4_wrapper) is used to separate the compilation
of the .cu file with nvcc from the corresponding C++ host code. The triad kernel directly calls the
fma function from CUDA as the NT2 AST recognizes every occurrence of an fma and replaces
it by its function (Listing 10, see boost::simd::tag::fma_). This optimization in itself is not
essential since it can be done by nvcc but is still interesting as it demonstrate the potential of
code generation. As NT2 already optimizes the AST by replacing patterns with corresponding
functions, we can benefit from this analysis. We can then call the corresponding CUDA function
if available or our own implementation for each pattern.

__global__ void fma4 ( f l o a t ∗ t0 , const f l o a t ∗ __restr i c t t1 , const f l o a t ∗ __restr i c t t2 ,
const f l o a t ∗ __restr i c t t3 )

{
i n t idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;
t0 [ idx ] = fmaf ( t1 [ idx ] , t2 [ idx ] , t3 [ idx ] ) ;

}

void fma4_wrapper ( f l o a t ∗ t0 , const f l o a t ∗ t1 , const f l o a t ∗ t2 , const f l o a t ∗ t3 , dim3
Grid , dim3 Block , cudaStream_t & Str , i n t Shr )

{
t r iad<<<Grid , Block , Shr , Str>>>(t0 , t1 , t2 , t3 ) ;

}

Listing 11: NT2 CUDA Triad kernel

The host code is partially described in Listing 12 and 13. Listing 12 corresponds to the
initialization of parameters and data before doing the actual computation on the device. The
blockSize and stream number is determined during the generation process depending on the
number of parameters and architecture. The blocksize is usually generated by measuring the
bandwitdth of transfers from host to device in a range and choosing the most optimal one.
To benefit best from the Kepler GPU bandwidth a block size of 40000 is necessary for single
precision values. Double precision computations would lead to a lower block size generated.
Similarly, the blockDim used is the high value available for the architecture as we generate
element-wise operations.

us ing boost : : proto : : chi ld_c ;
us ing boost : : proto : : va lue ;

std : : s i ze_t s i z e = numel ( boost : : proto : : child_c <0>(a1 ) ) ;
std : : s i ze_t b l o ckS i z e = std : : min ( std : : s i ze_t (40000) , s i z e ) ;
std : : s i ze_t nStreams = std : : min ( std : : s i ze_t (2) , s i z e / b l o ckS i z e ) ;
std : : s i ze_t n = s i z e / b l o ckS i z e ;
std : : s i ze_t l e f t o v e r = s i z e % b lockS i z e ;
dim3 blockDim = std : : min ( std : : s i ze_t (1024) , s i z e ) ;
dim3 dimGrid = b lockS i z e / s i ze_t (1024) ;
cudaStream_t stream [ nStreams ] ;

// A l l o ca t i ng memory on the dev i ce
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value ( a0 ) . s p e c i f i c s ( ) . a l l o c a t e ( b lockS ize , nStreams , s i z e , t rue ) ;
va lue ( child_c <0>(a1 ) ) . s p e c i f i c s ( ) . a l l o c a t e ( b lockS ize , nStreams , s i z e ) ;
va lue ( child_c <1>(a1 ) ) . s p e c i f i c s ( ) . a l l o c a t e ( b lockS ize , nStreams , s i z e ) ;
va lue ( child_c <2>(a1 ) ) . s p e c i f i c s ( ) . a l l o c a t e ( b lockS ize , nStreams , s i z e ) ;

// checks redundancy between inputs and outputs
std : : unordered_set<const f l o a t ∗> addr ;
addr . i n s e r t ( child_c <0>(a0 ) . data ( ) ) ;

f o r ( std : : s i ze_t i =0; i < nStreams ; ++i )
{

cudaStreamCreate(&stream [ i ] ) ;
}

Listing 12: NT2 CUDA Triad Host Code 1

Depending on the number of parameters the size may be lowered to limit the allocations. The
allocation process includes pinned memory and device memory allocation. If containers were
defined on the GPU with nt2 :: device_, they would not appear in the allocation phase. As we
have no information on the pointer for each container, we use an unordered set to limit redun-
dancy in memory transfers.

Listing 13 describes the computation phase. It relies on block streaming with transfers to
the GPU only if NT2 tables are on the host. This streaming process is based on the overlap data
transfers concept described by NVIDIA. It consists in creating multiple streams (the number
depends on the architecture and problem intensity/size) and launching for each stream a transfer
host to device, the CUDA kernel and the transfers device to host for a block. As the host memory
has already been allocated, we must first transfer the data to pinned memory with cudaHostAlloc
to benefit from GPU optimizations. Since the difference in bandwidth between pinned and page-
able memory only increases with new architectures, this optimization can give a speedup even
with a mono-stream program.

f o r ( std : : s i ze_t i = 0 ; i < n ; ++i )
{

std : : s i ze_t j = i % nStreams ;
value ( a0 ) . s p e c i f i c s ( ) . t rans fer_htd ( a0 , i , stream [ j ] , j ) ;
va lue ( child_c <0>(a1 ) ) . s p e c i f i c s ( ) . t rans fer_htd ( child_c <0>(a1 ) , i , stream [ j ] , j ,

addr ) ;
va lue ( child_c <1>(a1 ) ) . s p e c i f i c s ( ) . t rans fer_htd ( child_c <1>(a1 ) , i , stream [ j ] , j ,

addr ) ;
va lue ( child_c <2>(a1 ) ) . s p e c i f i c s ( ) . t rans fer_htd ( child_c <2>(a1 ) , i , stream [ j ] , j ,

addr ) ;

fma4_wrapper ( value ( a0 ) . s p e c i f i c s ( ) . data ( j ) , va lue ( child_c <0>(a1 ) ) . s p e c i f i c s ( ) . data
( j ) , va lue (

child_c <1>(a1 ) ) . s p e c i f i c s ( ) . data ( j ) , va lue ( child_c <2>(a1 ) ) . s p e c i f i c s ( ) . data ( j ) ,
dimGrid , blockDim , stream [ j ] ) ;

boost : : proto : : va lue ( a0 ) . s p e c i f i c s ( ) . t rans fer_dth ( a0 , i , stream [ j ] , j ) ;
}

i f ( l e f t o v e r !=0)
{

. . .
}

Listing 13: NT2 CUDA Triad Host Code 2

As stated in section 3, computations on the device only occur if some conditions are met. As
of now, these conditions are limited to the problem size and data locality but can be extended
as the call to transform is automatic when NT2 has defined that CUDA is available. Due to the
hierarchical tag dispatching in NT2 , a system with an Intel processor coupled with an NVIDIA
card will have a tag similar to the following : cuda_ < openmp_ < simd_extension >>
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. Therefore, if conditions for dispatch on the GPU are not met we will call the next level of
transform ( i.e. openmp). This enables us to use both the CPU and GPU in parallel depending
on the problem which is a functionality rarely implemented in libraries. We further this process
with our MAGMA back-end which does hybrid computations on most of its solvers.

The code generation is hidden from the user as the generation process is done during the
standard compilation phase. The compilation overhead is negligeable as the analysis of the AST
is linear and the code generation is usually not very long as seen above. The user interface only
contains the added semantic information while all the complex allocations are hidden from the
user.

5 Experiments

In this section, we will show that our generation process produces satisfactory performances in
most situations. The benchmarks are realized with the following components :

• CPU : 2 x 6 cores Intel Xeon E5-2620 15MB L3, AVX

• GPU : Tesla K40m

– Pageable host to device (HTD) : 3 GB/s

– Pinned host to device : 9.8 GB/s

• Memory : 65 GB with a memcpy bandwidth of 5GB/s

• GCC 4.9, CUDA 7.0

5.1 Black & Scholes kernel

The Black & Scholes algorithm represents a mathematical model that gives a theoretical estimate
of the price of European call and put options on a non-divideend-paying stock. It is a bandwidth
bound algorithm for GPU if we take into account the memory transfers.

The code is given in Listing 14 using the loop-fused technique described previously with the
operator tie. The nt2 :: device_ tag is specific for accelerator enabled architectures. However, if
we use the tag while no accelerator is available we will fall back to the default architecture which
is nt2 :: host_.

tab le<T> b la ck s cho l e s ( table<T> const& S , table<T> const& X
, table<T> const& Ta , T const r
, T const v

)
{

auto s = extent (Ta) ;
tab le<T , device_ > d( s ) , d1 ( s ) , d2 ( s ) ;
tab le<T> r ;

t i e (d , d1 , d2 , r ) = t i e ( sq r t (Ta)
, l og (S/X)+(fma ( sqr (v ) , 0 . 5 f , r ) ∗Ta) /(v∗d)
, fma(−v , d , d1 )
, S∗normcdf ( d1 )−X∗exp(−r ∗Ta) ∗normcdf ( d2 )
) ;

r e turn r ;
}

Listing 14: NT2 black and scholes
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This additional semantic information on memory locality can help to avoid useless memory
transfers while staying simple enough for the user.

This will result in the .cu file in Listing 15 generated for floating point values. Since the AST
does not contain the name of the parameters, the kernel generator has to give a different name to
each one. This does not lead to a change in performance for the kernel as we just pass multiple
times the same pointer. Memory allocation on device and data transfers between host and device
do pointer checking in the host code (see triad example) to insure no redundant work is done
incurring also negligible overhead. The fnms function is due to an NT2AST transformation and
corresponds to the fused negated multiply-subtract of three values.

__global__ void bs ( f l o a t ∗ t0 , f l o a t ∗ t1 , f l o a t ∗ t2 , f l o a t ∗ t3 , const f l o a t ∗
__restr i c t t4 , const f l o a t ∗ __restr i c t t5 , const f l o a t ∗ __restr i c t t6 , const f l o a t
t7 , const f l o a t ∗ __restr i c t t8 , const f l o a t t9 , const f l o a t ∗ __restr i c t t10 ,

const f l o a t t11 , const f l o a t ∗ __restr i c t t12 , const f l o a t ∗ __restr i c t t13 , const
f l o a t ∗ __restr i c t t14 , const f l o a t t15 , const f l o a t ∗ __restr i c t t16 , const f l o a t ∗
__restr i c t t17 , const f l o a t ∗ __restr i c t t18 , const f l o a t ∗ __restr i c t t19 )

{
i n t i = blockIdx . x∗blockDim . x+threadIdx . x ;
t0 [ i ] = s q r t f ( t4 [ i ] ) ;
t1 [ i ] = plus ( l o g f ( d i v i d e s ( t5 [ i ] , t6 [ i ] ) ) , d i v i d e s ( mu l t i p l i e s ( t7 , t8 [ i ] ) , mu l t i p l i e s ( t9 , t10

[ i ] ) ) ) ;
t2 [ i ] = fnms ( t11 , t12 [ i ] , t13 [ i ] ) ;
t3 [ i ] = fnms ( mu l t i p l i e s ( t14 [ i ] , expf ( mu l t i p l i e s ( t15 , t16 [ i ] ) ) ) , fastnormcdf ( t17 [ i ] ) ,

mu l t i p l i e s ( t18 [ i ] , fastnormcdf ( t19 [ i ] ) ) ) ;
}

Listing 15: NT2 black and scholes fused cuda kernel
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Figure 5: Black and Scholes Performance Comparison (in ms)

The Black & Scholes algorithm involves high latency and high register count operations.
This will result in sub-optimal performance on SIMD for the CPU due to spilled registers while
a Kepler GPU will not have any such problem. As seen in Figure 5, the execution time of the
kernel on the GPU is negligible (3 ms) compared to the overall time of the optimized version
with SIMD and OPENMP in NT2 . Most of the time is spent transferring the data between
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host and device memory which can be avoided with the right semantic information available.
Thus, there is no overlap possible for computations. We still have better performance than the
Boost.Compute version on which most C++ libraries are based as we use block streaming with
pinned memory reaching a near-optimal throughput (average of 9.7 GB/s) on device transfers.
As the bandwidth of a memcpy on the CPU (5 GB/s) is faster than page-able transfers (3GB/s)
even without any overlap between transfers and computation we still increase the performance.
This optimization can be disabled depending on the CUDA architecture.

As computations on the GPU are often done in great number, if the user allocates the data
on the GPU he will pay no transfer cost for the rest of the computations and in this case the
CUDA kernel is up to twelve times faster than the hand-optimized version for CPU.

5.2 Linsolve kernel
Linsolve is a Matlab routine for solving linear systems. As NT2 has its own implementation
of linsolve with a LAPACK or MAGMA back-end, we can combine it with the code generation
process. It also supports mixed-precision algorithms in both CPU and GPU versions through
LAPACK/MAGMA or their own implementation. In this benchmark, we consider the solution
of a dense linear system using the LU factorization and apply one step of iterative refinement [2]:

1. Compute r = b−Ax̂.

2. Solve Ad = r.

3. Update y = x̂+ d.

The equivalent NT2 code is the following :
tab le<T, device_> A, b ;
table<T, s e t t i n g s ( device_ , upper_triangular_ )> r ;
table<T, s e t t i n g s ( device_ , lower_tr iangular_ )> l ;

t i e ( l , u ) = lu (A)
x = mtimes ( t rans (A) ,b) ;
x = l i n s o l v e ( l , x ) ; // lower t r i a n gu l a r s o l v e
x = l i n s o l v e ( r , x ) ; // upper t r i a n gu l a r s o l v e

// One−s tep re f inement
d = b − nt2 : : mtimes (A, x ) ;
d = nt2 : : mtimes ( t rans (A) ,d) ;

d = nt2 : : l i n s o l v e ( l , d ) ;
d = nt2 : : l i n s o l v e ( r , d ) ;

x = x + d ;

Listing 16: NT2 LU linear solve with iterative refinement

If executed on the CPU, the code in Listing 16 will call the LAPACK routines. The semantic
information upper_triangular_ allows linsolve to call the triangular solver instead of doing
the classic linear solve. In a similar way, the Boost.Proto trans(A) node will be caught by the
mtimes function and not applied but rather passed as the transpose parameter for the matrices
product gemm. If executed on the GPU, the same optimizations will be applied and the iterative
refinement process will trigger calls to transform for both element-wise operations.

The performance results in Figure 6 attest that the performance obtained with our model is
relevant. The GPU version with MSP calls magma kernels using the CUBLAS dgemm routine
without doing any transfer and reaches near peak performance of a K40m GPU which corre-
sponds to 1.40 Tflop/s. The version that does not use MSP is slower as transfers are done
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during the iterative refinement step. The CPU version quickly reaches the peak performance of
both CPU which is 210 Gflop/s. As we can see, there is no performance loss while call the LA-
PACK/MAGMA back-ends and if device pointers are passed to our code generator, there will be
no memory transfers. Similar performance would also be reached using the other factorizations
available in NT2 .
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Figure 6: Performance comparison of NT2 linear solve (in Gflop/s)

6 Conclusion

The development of tools for simplifying accelerator programming has been an active topic since
accelerators have become a mainstream element of high-performance computing systems. In
this paper, we proposed an extension of a high-level, data-parallel scientific computing library
to specifically handle GPU accelerators. Our main objectives were to keep a similar level of
expressiveness in the client code with a Matlab -like interface while supporting different use
cases of accelerator programming.

To reach this goal, we have implemented amulti-stage system in which the initial C++ code
is used to automatically generate the equivalent CUDA kernel by reusing our internal represen-
tation of this code. This representation is based on C++ Expression Templates and the Al-
gorithmic Skeleton to identify and classify expressions based on the kind of loop nest that is
required. Finally, we showed on a selection of examples that the performance obtained is close
to the hardware capability and exhibits benefits compared to other solutions.

Work is still on-going on this system, including the final integration into the main NT2 release
and support for more specific functions on the latest GPUs. Implementing a more thorough cost
model to ensure better scheduling of computation between CPU and GPU is also being studied.
The natural evolution of this work is to extend our approach to the Intel Xeon Phi coprocessor,
the runtime-based CUDA compiler recently released, or OpenCL devices. An interesting track
of research can be derived from the support of OpenCL by targeting OpenCL enabled FPGAs,
as NT2 could bridge between high-level C++ and hardware design.
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