P. Pereira, A. Casaca, J. Rodrigues, V. Soares, J. Triay et al., From Delay-Tolerant Networks to Vehicular Delay-Tolerant Networks, IEEE Communications Surveys & Tutorials, vol.14, issue.4, pp.1-17, 2011.
DOI : 10.1109/SURV.2011.081611.00102

C. Caini, H. Cruickshank, S. Farrell, and M. Marchese, Delay- and Disruption-Tolerant Networking (DTN): An Alternative Solution for Future Satellite Networking Applications, Proceedings of the IEEE, vol.99, issue.11, pp.1-18, 2011.
DOI : 10.1109/JPROC.2011.2158378

P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft et al., Pocket switched networks and human mobility in conference environments, Proceeding of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking , WDTN '05, pp.244-251, 2005.
DOI : 10.1145/1080139.1080142

T. Jonson, J. Pezeshki, V. Chao, K. Smith, and J. Fazio, Application of delay tolerant networking (DTN) in Airborne Networks, MILCOM 2008, 2008 IEEE Military Communications Conference, pp.1-7, 2008.
DOI : 10.1109/MILCOM.2008.4753464

N. Kayastha, D. Niyato, P. Wang, and E. Hossain, Applications, Architectures, and Protocol Design Issues for Mobile Social Networks: A Survey, Proceedings of the IEEE, vol.99, issue.12, pp.2130-2158, 2011.
DOI : 10.1109/JPROC.2011.2169033

T. Small and Z. Haas, The shared wireless infostation model, Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing , MobiHoc '03, pp.233-244, 2003.
DOI : 10.1145/778415.778443

A. Pentland, R. Fletcher, and A. Hasson, DakNet: rethinking connectivity in developing nations, Computer, vol.37, issue.1, pp.78-83, 2004.
DOI : 10.1109/MC.2004.1260729

M. Grossglauser and D. Tse, Mobility increases the capacity of ad hoc wireless networks, IEEE/ACM Transactions on Networking, vol.10, issue.4, pp.477-486, 2002.
DOI : 10.1109/TNET.2002.801403

A. Vahdat and D. Becker, Epidemic Routing for Partially-Connected Ad Hoc Networks, 2000.

T. Spyropoulos, K. Psounis, and C. Raghavendra, Efficient Routing in Intermittently Connected Mobile Networks: The Single-Copy Case, IEEE/ACM Transactions on Networking, vol.16, issue.1, pp.63-76, 2008.
DOI : 10.1109/TNET.2007.897962

E. Altman, T. Basar, and F. D. Pellegrini, Optimal monotone forwarding policies in delay tolerant mobile ad-hoc networks, Performance Evaluation, vol.67, issue.4, pp.299-317, 2010.
DOI : 10.1016/j.peva.2009.09.001

URL : https://hal.archives-ouvertes.fr/inria-00492051

E. Altman, A. Azad, T. Basar, and F. D. Pellegrini, Optimal Activation and Transmission Control in Delay Tolerant Networks, 2010 Proceedings IEEE INFOCOM, pp.1-5, 2010.
DOI : 10.1109/INFCOM.2010.5462264

URL : https://hal.archives-ouvertes.fr/inria-00408520

A. Karnik and P. Dayama, Optimal control of information epidemics, 2012 Fourth International Conference on Communication Systems and Networks (COMSNETS 2012), pp.1-7
DOI : 10.1109/COMSNETS.2012.6151316

M. Khouzani, S. Sarkar, and E. Altman, Optimal control of epidemic evolution, 2011 Proceedings IEEE INFOCOM, pp.1683-1691, 2011.
DOI : 10.1109/INFCOM.2011.5934963

P. Chen and K. Chen, Optimal control of epidemic information dissemination in mobile ad hoc networks, IEEE GLOBECOM 2011, pp.1-5, 2011.

M. Khouzani, S. Sarkar, and E. Altman, Dispatch then stop: Optimal dissemination of security patches in mobile wireless networks, 49th IEEE Conference on Decision and Control (CDC), pp.2354-2359, 2010.
DOI : 10.1109/CDC.2010.5717273

M. Khouzani, E. Altman, and S. Sarkar, Optimal Quarantining of Wireless Malware Through Reception Gain Control, IEEE Transactions on Automatic Control, vol.57, issue.1, pp.49-61, 2012.
DOI : 10.1109/TAC.2011.2150350

M. Khouzani, S. Sarkar, and E. Altman, Optimal Dissemination of Security Patches in Mobile Wireless Networks, IEEE Transactions on Information Theory, vol.58, issue.7, pp.4714-4732, 2012.
DOI : 10.1109/TIT.2012.2195295

W. Kang, F. Kelly, N. Lee, and R. Williams, Fluid and Brownian approximations for an Internet congestion control model, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pp.3938-3943, 2004.
DOI : 10.1109/CDC.2004.1429360

M. Benaim and J. L. Boudec, A class of mean field interaction models for computer and communication systems, Performance Evaluation, vol.65, issue.11-12, pp.823-838, 2008.
DOI : 10.1016/j.peva.2008.03.005

R. Darling and J. Norris, Differential equation approximations for Markov chains, Probability surveys, pp.37-79, 2008.
DOI : 10.1214/07-PS121

Y. Ko and N. Gautam, Transient analysis of queues for peer-based multimedia content delivery, IIE Transactions, vol.4, issue.12, pp.881-896, 2010.
DOI : 10.1287/opre.1050.0227

G. Carofiglio, R. Gaeta, M. Garetto, P. Giaccone, E. Leonardi et al., A Fluid-Diffusive Approach for Modelling P2P Systems, 14th IEEE International Symposium on Modeling, Analysis, and Simulation, pp.156-166, 2006.
DOI : 10.1109/MASCOTS.2006.5

G. Kesidis, T. Konstantopoulos, and P. Sousi, A stochastic epidemiological model and a deterministic limit for bittorrent-like peer-to-peer filesharing networks, Network Control and Optimization, pp.26-36, 2009.

D. Qiu and R. Srikant, Modeling and performance analysis of bittorrent-like peer-to-peer networks, SIGCOMM '04, pp.367-378, 2004.

A. Ferragut and F. Paganini, Content dynamics in p2p networks from queueing and fluid perspectives, International Teletraffic Congress (ITC)), 2012, pp.1-8

S. Alouf, E. Altman, C. Barakat, and P. Nain, Optimal estimation of multicast membership, IEEE Transactions on Signal Processing, vol.51, issue.8, pp.2165-2176, 2003.
DOI : 10.1109/TSP.2003.814461

URL : https://hal.archives-ouvertes.fr/hal-00641256

A. Jazwinski, Stochastic Processes and Filtering Theory, ser Mathematics in Science and Engineering, 1970.

S. Sethi and G. Thompson, Optimal control theory: applications to management science and economics, 2005.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms Information Theory, IEEE Transactions on, vol.52, issue.6, pp.2508-2530, 2006.

Y. M. Ko and N. Gautam, Epidemic-Based Information Dissemination in Wireless Mobile Sensor Networks, IEEE/ACM Transactions on Networking, vol.18, issue.6, pp.1738-1751, 2010.
DOI : 10.1109/TNET.2010.2048122

A. Nedic and A. Ozdaglar, Distributed subgradient methods for multiagent optimization Automatic Control, IEEE Transactions on, vol.54, issue.1, pp.48-61, 2009.

X. Zhang, G. Neglia, J. Kurose, and D. Towsley, Performance modeling of epidemic routing, Computer Networks, vol.51, issue.10, pp.2867-2891, 2007.
DOI : 10.1016/j.comnet.2006.11.028

R. Groenvelt, P. Nain, and G. Koole, The message delay in mobile ad hoc networks, Performance Evaluation, vol.62, issue.1-4, pp.210-228, 2005.
DOI : 10.1016/j.peva.2005.07.018

M. Ibrahim, A. A. Hanbali, and P. Nain, Delay and resource analysis in MANETs in presence of throwboxes, Performance Evaluation, vol.64, issue.9-12, pp.9-12, 2007.
DOI : 10.1016/j.peva.2007.06.005

W. Gao, Q. Li, B. Zhao, and G. Cao, Multicasting in delay tolerant networks, Proceedings of the tenth ACM international symposium on Mobile ad hoc networking and computing, MobiHoc '09, pp.299-308, 2009.
DOI : 10.1145/1530748.1530790

]. H. Zhu, L. Fu, G. Xue, Y. Zhu, M. Li et al., Recognizing Exponential Inter-Contact Time in VANETs, 2010 Proceedings IEEE INFOCOM, pp.1-5, 2010.
DOI : 10.1109/INFCOM.2010.5462263

T. Karagiannis, J. Boudec, and M. Vojnovi´cvojnovi´c, Power law and exponential decay of inter contact times between mobile devices, Proceedings of the 13th annual ACM international conference on Mobile computing and networking , MobiCom '07, pp.183-194, 2007.
DOI : 10.1145/1287853.1287875

A. Passarella and M. Conti, Analysis of Individual Pair and Aggregate Intercontact Times in Heterogeneous Opportunistic Networks, IEEE Transactions on Mobile Computing, vol.12, issue.12, pp.2483-2495, 2013.
DOI : 10.1109/TMC.2012.213

P. Bremaud, Point Processes and Queues: Martingale Dynamics, 1981.
DOI : 10.1007/978-1-4684-9477-8

A. Ali, E. Altman, T. Chahed, D. Fiems, M. Panda et al., Estimating File-Spread in Delay Tolerant Networks under Two-Hop Routing, NETWORKING 2012, pp.277-290, 2012.
DOI : 10.1007/978-3-642-30054-7_22

URL : https://hal.archives-ouvertes.fr/hal-00726802

K. Harras and K. Almeroth, Transport Layer Issues in Delay Tolerant Mobile Networks, Lecture Notes in Computer Science, vol.6, issue.2, pp.463-475, 2006.
DOI : 10.1109/98.760423

E. Hernández-orallo, J. Cano, C. T. Calafate, and P. Manzoni, A representative and accurate characterization of inter-contact times in mobile opportunistic networks analysis & simulation of wireless and mobile systems, Proceedings of the 16th ACM international conference on Modeling, pp.309-316, 2013.

T. G. Kurtz, Approximation of Population Processes, Society for Industrial and Applied Mathematics, 1981.
DOI : 10.1137/1.9781611970333

S. Ethier and T. Kurtz, Markov Processes: Characterization And Convergence , ser, 2005.
DOI : 10.1002/9780470316658

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 1988.

A. E. Bryson and L. J. Henrikson, Estimation using sampled data containing sequentially correlated noise., Journal of Spacecraft and Rockets, vol.5, issue.6, pp.662-665, 1968.
DOI : 10.2514/3.29327

W. Whitt, . Appendix, . Density-dependent, . Markov, and . Chains, In this appendix, we recall the definition of and two limit theorems for the so-called density dependent Markov chains [48], [49]. First, we fix some notation. The set of integers (resp. real numbers) is denoted by Z (resp. R) The space of d-dimensional vectors with integer (resp. real) components is denoted by Z d (resp. R d ) The absolute value of a scalar b is denoted by |b|. The euclidean norm of a vector z is denoted by z. The transpose of a vector z (resp. a matrix G) is denoted by z T (resp. G T ) Consider a one-parameter family of continuous time Markov chains {Z (n) (t), t ? 0}, where {Z (n) (t)} has state space S (n) ? Z d and transition rate matrix Q (n) = [q (n) (Z, Z )] Z,Z ?S (n), 2002.