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Abstract

Multilinear face models are widely used to model the
space of human faces with expressions. For databases of
3D human faces of different identities performing multiple
expressions, these statistical shape models decouple iden-
tity and expression variations. To compute a high-quality
multilinear face model, the quality of the registration of the
database of 3D face scans used for training is essential.
Meanwhile, a multilinear face model can be used as an ef-
fective prior to register 3D face scans, which are typically
noisy and incomplete. Inspired by the minimum description
length approach, we propose the �rst method to jointly op-
timize a multilinear model and the registration of the 3D
scans used for training. Given an initial registration, our
approach fully automatically improves the registration by
optimizing an objective function that measures the compact-
ness of the multilinear model, resulting in a sparse model.
We choose a continuous representation for each face shape
that allows to use a quasi-Newton method in parameter
space for optimization. We show that our approach is com-
putationally signi�cantly more ef�cient and leads to corre-
spondences of higher quality than existing methods based
on linear statistical models. This allows us to evaluate our
approach on large standard 3D face databases and in the
presence of noisy initializations.

1. Introduction

The human face is one important factor for any kind of
social interaction in our daily life. This motivates many dif-
ferent �elds such as human computer interaction, medicine,
ergonomics or security, to investigate the human face. Since
many of these areas are interested in the 3D geometry of the
face, the number of publicly available 3D face databases in-
creased over the last years. As the manual analysis of large
databases is intractable, automatic data driven and statistical
approaches are widely used to analyze the structure of the
data. To compute statistics, all shapes of the dataset need to
be in correspondence [10, Chapter 1].

Computing these correspondences for human face data is

a challenging task that many methods aim to solve (e.g. [24,
26, 17, 14, 27]). Given a good registration, a statistical face
model can be learned. In computer vision and graphics,
statistical face models are usede.g. to reconstruct the 3D
geometry of the face from 2D images [1], to recognize facial
expressions [24], to transfer expressions between images or
videos [30], or to change expressions in 3D videos [31].

Statistical face models can also be used to reconstruct
the 3D geometry from noisy or partially occluded face
scans [5] and are therefore directly applicable for registra-
tion. Furthermore, registration methods with prior learned
knowledge outperform model-free methods like template
�tting [25, 2]. Summing up, this is a chicken-and-egg prob-
lem: given a good registration, a statistical model can be
learned, and given a representative statistical model, a good
registration can be computed. The quality of a given statis-
tical model can be measured [10, Chapter 3.3.1], and due
to the dependency of the statistical model on a registration,
this measurement also evaluates the underlying registration.

Methods that aim at jointly optimizing the registration
and a statistical model have been developed for princi-
pal component analysis (PCA) (e.g. [10, Chapter 4], [21]).
Furthermore, variants of this linear method like part-based
PCA [6], kernel PCA [8] or human body speci�c ap-
proaches [16] exist. These methods measure the model
quality and change the registration such that the quality of
the model and the registration improve at the same time.
Since the model quality depends on all shapes, these meth-
ods are called groupwise optimization methods. Linear
PCA-based methods have been proven to outperform dif-
ferent pairwise correspondence optimization methods [9].

Since the variations in databases of human faces from
different identities performing different expressions cannot
be modeled well using a linear space, the existing methods
are not suitable for optimizing the correspondence of human
faces. The space of human faces in various expressions can
be well modeled using a multilinear model [30, 24, 31, 2, 5],
which is a higher-order generalization of a PCA model.

This motivates us to propose an approach to optimize
the correspondence for 3D face databases based on multi-
linear statistical models. The correspondence is optimized
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based on the minimum description length (MDL) principle,
which leads to a sparse multilinear model. A key advan-
tage of extending MDL to multilinear models is a reduced
parameter space, which can be optimized ef�ciently. The
main challenge is that while for the linear case PCA pro-
vides an optimal low-dimensional space, the solution for
the multilinear case is NP-hard to compute [15]. To �nd
a good basis for face models, we compare different tensor
decompositions for their ability to reconstruct unseen face
data. Another previously unaddressed challenge related to
3D face data is to allow for manifold boundaries during op-
timization, which is needed as the face has a mouth and an
outer boundary. We solve this issue ef�ciently by introduc-
ing constraints in the optimization framework.

The main contributions of this work are: (1) we intro-
duce the �rst fully automatic groupwise correspondence op-
timization approach for multilinearly distributed data, and
(2) we show that our approach is computationally signi�-
cantly more ef�cient and leads to correspondences of higher
quality than existing PCA-based optimization methods.

2. Related work

Template-based facial correspondence computation:
Our method is related to methods that aim to compute cor-
respondences between sets of shapes. While many meth-
ods exist to establish correspondence for arbitrary classes of
shapes, we focus on 3D face registration methods. Given a
sparse set of 3D landmarks, Mpiperiset al. [24] register 3D
faces in various expressions with an elastically deformable
face model. Passaliset al. [26] �t an annotated face model
to the scan by solving a second order differential equation.
Huanget al. [17] split the face into multiple parts and per-
form a deformation of each part to �t an input face. Guoet
al. [14] use a thin-plate spline guided template �tting to reg-
ister 3D face scans. Panet al. [25] use a sparse deformable
model for registration. They learn a dictionary on a set of
registered faces and register a new face by restricting the
correspondences to be a sparse representation of the learned
dictionary. Salazaret al. [27] use a blendshape model to �t
the expression followed by a template �tting using a non-
rigid iterative closest point method to get the facial details.

All of these methods �nd a good correspondence, but
none of them aim at producing a registration that is optimal
for statistical modeling. Note that any of these methods can
be used to initialize our optimization approach.
Statistical face models:Given a set of 3D shapes in full
correspondence, various methods can perform statistical
analysis. We focus our discussion on multilinear shape
spaces for 3D faces. Vlasicet al. [30] use a multilinear
model for a database of human faces that decouples fa-
cial shape, expression, and viseme to transfer facial per-
formance between 2D videos. Mpiperiset al. [24] use a
multilinear model for identity and expression recognition.

Yang et al. [31] reconstruct the 3D face shape from 2D
videos and exploit the decoupling of identity and expres-
sion variations to modify the identity or expression within
the videos. Bolkart and Wuhrer [2] use a multilinear model
to register a large database of 3D faces in motion and per-
form analysis on the resulting registration. Bruntonet al. [5]
learn multiple localized multilinear models and use these to
reconstruct models from noisy and occluded face scans.

As these methods use a multilinear model for 3D faces
of multiple identities and expressions, they employ the same
model as our method. However, none of them aim at opti-
mizing the correspondence using the learned model.
Registration optimization: While some prior works in
machine learning explore the idea of jointly learning a
model and correspondence information (e.g. [4, 29, 18]),
our method is most related to methods that aim to jointly
optimize the registration of a set of 3D shapes and a learned
statistical model. Kotcheff and Taylor [21] propose a group-
wise correspondence optimization based on a PCA model
that explicitly favors compact models. Davieset al. [10,
Chapter 4] give an overview of different objective func-
tions for correspondence optimization and motivate an in-
formation theoretic objective function minimizing the de-
scription length of the data. The basic concept of minimum
description length approaches is to minimize the length of
a message that is transmitted from a sender to a receiver.
They encode the data with a PCA model and alter the cor-
respondence such that the number of bits needed to de-
scribe the model and the encoded data is minimal. Davieset
al. [9] show that MDL outperforms state-of-the-art registra-
tion methods for medical datasets. Gollmeret al. [13] com-
pare different objective functions. They show that while the
determinant of the covariance matrix is easier to optimize,
the results are comparable to results produced by MDL.

All these methods model the data with one linear PCA
model. In contrast, Burghardet al. [6] use a part-based
linear model, and Chenet al. [8] model the data with a
non-linear kernel PCA. Hirshberget al. [16] derive a skele-
ton based approach speci�cally for human body shapes to
jointly optimize the registration and a statistical model.

None of these methods can model 3D faces with vary-
ing identities and expressions. To allow this, we introduce
the �rst groupwise correspondence optimization approach
for multilinearly distributed data. Furthermore, while most
methods assume the object to be a closed manifold, our ap-
proach handles manifolds with multiple boundaries.

3. Multilinear shape space

This section introduces the multilinear model and dif-
ferent tensor decompositions to derive the model. Multi-
linear models can effectively model statistical variations of
faces due to identity and expression as it decouples these
two types of shape variation.



3.1. Multilinear model

Given a set of registered and spatially aligned 3D face
scans ofd2 identities ind3 expressions each, every face is
represented by a vectorf = ( x1; y1; z1; � � � ; xn ; yn ; zn )T

that consists ofn vertices(x i ; yi ; zi ). We center each face
by subtracting the mean over all training facesf and arrange
the centered faces in a 3-mode tensorA 2 R3n � d2 � d3 ,
where modes describe the different axes of a tensor. The
data are placed withinA , such that the vertex coordinates
are associated with the �rst mode, the different identities
with the second mode, and the different expressions with
the third mode ofA . The decomposition ofA into

A = M � 2 U2 � 3 U3; (1)

where� n denotes then-th mode product, results in a tensor
M 2 R3n � m 2 � m 3 called multilinear model, and orthogo-
nal factor matricesU2 2 Rd2 � m 2 andU3 2 Rd3 � m 3 . The
n-th mode productM � n Un of tensorM with matrix Un

replaces each vectorm 2 Rm n aligned withi -th mode by
Un m 2 Rdn . The multilinear model represents a registered
3D facef 2 R3n as

f � f + M � 2 wT
2 � 3 wT

3 ; (2)

wherew2 2 Rm 2 andw3 2 Rm 3 are the identity and ex-
pression coef�cients.

3.2. Tensor decompositions

The decomposition ofA in Equation 1 is called Tucker
decomposition. The goal is to �nd the best Tucker decom-
position with a lower-dimensional tensorM that is as close
as possible toA . The quality of the tensor approximation
is measured by the norm of the residual. Computing the
best Tucker decomposition is NP-hard [15]. Furthermore,
in contrast to decomposing a matrix into orthogonal matri-
ces (computed using singular value decomposition (SVD)),
Tucker decompositions are not unique. An exact Tucker de-
composition can be computed ifmn = rank (A(n ) ) for all
n. Here,A(n ) denotes the matrix unfolding ofA in the di-
rection ofn-th mode (all vectors in the direction of then-th
mode form the columns ofA(n ) ). If mn < rank (A(n ) ) for
at least onen, the decomposition approximatesA .

The following describes different methods to compute
the Tucker decomposition. Section 5.1 evaluates for each
method its ability to reconstruct unseen data when applied
for model �tting. We compare the three tensor decompo-
sitions described by Kolda and Bader [20], namely: higher
order SVD (HOSVD) [22], higher order orthogonal itera-
tion (HOOI) [22], and a Newton-Grassmann optimization
approach [12]. All these methods compute a Tucker de-
composition for given maximum mode ranksm2 andm3.
HOSVD: HOSVD is a higher-order generalization of ma-
trix SVD. To compute the matricesUn , a matrix SVD is

Registered Shapes

Identity Expression

Multilinear Model

Model Evaluation

ECOMP + wREGEREG

Optimization
L-BFGS

Figure 1. Overview of the iterative multilinear registration.

performed asA(n ) = Un Sn VT
n , whereUn 2 Rdn � dn con-

tains the left singular vectors ofA(n ) . Truncating columns
then reduces the dimensions of identity and expression
space. The multilinear model is then computed asM =
A � 2 UT

2 � 3 UT
3 . Even for givenm2 andm3, the truncated

HOSVD does not give an optimal approximation ofA .
HOOI: Initialized by HOSVD, this method iteratively op-
timizes the Tucker decomposition. Within each iteration,
both factor matrices are updated by �xing one and updating
the other. That is, for a �xed mode-2 factor matrix, a ten-
sorX = A � 2 UT

2 is computed, andU3 is updated by the
m3 left singular vectors ofX(3) . A similar computation is
performed for a �xed mode-3 factor matrix. While HOOI
gives a better approximation ofA than HOSVD, it does not
necessarily �nd a stationary point.
Newton-Grassmann optimization: Initialized by
HOSVD, the Newton-Grassmann optimization approach
constrains each factor matrix to a Grassmannian manifold,
an equivalence class of orthogonal matrices. The Tucker
decomposition is then computed by a non-linear Newton
method on the product of two Grassmannian manifolds.
This method converges to a stationary point.

The evaluation of the different tensor decompositions
shows that applied to reconstructing unseen face data, they
perform almost identical (see Section 5.1). Since HOSVD
is the most ef�cient approach, in the following, we use
HOSVD to learn the multilinear model.

4. Groupwise correspondence optimization

This section introduces the concept of groupwise cor-
respondence optimizations and describes our approach for
multilinearly distributed data. Given a set of shapes in cor-
respondence, groupwise correspondence optimization min-
imizes an objective function that measures the quality of the
correspondence depending on all shapes. Using a statistical
model that describes the variation of the shapes, the objec-
tive function measures favorable properties of the model.

For PCA models, Kotcheff and Taylor [21] choose the
objective function to be the determinant of the covariance
matrix, which explicitly favors the induced linear statistical



model to be compact. The compactness of a linear statistical
model can be maximized by minimizing the variability of
the model, measured by the trace of the covariance matrix.

Compactness measures the variability captured by a
model. A compact model can describe instances of a given
dataset with the minimum number of parameters and has
minimal variance. For models of different compactness that
describe the same data, the model with higher compactness
and hence lower variance is favorable. It has been shown
that minimizing the variance of a PCA model performs sim-
ilarly to information theoretic approaches that aim at mini-
mizing the description length of the model [13].

Inspired by these previous works, we develop the �rst
MDL-based optimization approach for multilinear models.
This extension is challenging because the notion of com-
pactness needs to be extended to multilinear models, where
optimal tensor approximation is NP-hard. For 3D face
data, a further challenge arises from manifold boundaries.
Figure 1 gives an overview of our multilinear optimiza-
tion approach. Given a set of 3D faces of different iden-
tities performing different expressions with an initial corre-
spondence, we iteratively optimize the correspondence. We
compute a multilinear model on the registered data, and it-
eratively improve the model. In each iteration, the quality
of the model is measured using a groupwise objective func-
tion (Section 4.1). The registered shapes are represented
using a continuous parametrization (Section 4.2), and the
objective function is optimized in parameter space with a
quasi-Newton method (Section 4.3).

4.1. Multilinear objective function

Our groupwise objective function consists of two parts:
a compactness energyECOMP , and a regularization energy
EREG . We therefore aim to minimize

E = ECOMP + wREG EREG ; (3)

wherewREG is a weight that controls the in�uence of the
regularization. We now describe both terms in more detail.
Compactness: The compactness of a multilinear model
can be measured as the percentage of data variability cap-
tured in the �rst k components of each mode, wherek =
1; : : : ; max (d2; d3) [2]. Compactness is maximized by a
sparse model that captures all of the variability in few com-
ponents. To encourage a sparse model, we introduce an
energy on the variability of the identity and expression sub-
spaces. Like Kotcheff and Taylor [21], we choose a log-sum
penalty function, as log-sum functions are known to encour-
age sparsity by heavily punishing small values [7]. That is,
we aim to minimize

ECOMP =
1
d2

d2X

i =1

ln( � (2)
i + � 2) +

1
d3

d3X

i =1

ln( � (3)
i + � 3); (4)

where� (n )
i denotes thei -th eigenvalue of the mode-n co-

variance matrix. Small regularization constants� n are used

Figure 2. Initial surface parametrization of the 3D face template.
Left: 2D parameter domain. Right: 3D parametrization.

Figure 3. Parametrization for one shape. Left: initialization. Mid-
dle: thin-plate spline. Right:(u; v)-parameter lines.

to avoid singularities ofECOMP for vanishing eigenvalues.
Equivalent to HOSVD, the mode-2 and mode-3 covariance
matrices are computed as1d3

A(2) AT
(2) and 1

d2
A(3) AT

(3) .
The energyECOMP is minimized by moving points

within the continuous surface of each shape. Since the com-
putation of the covariance only considers a discrete number
of points instead of the continuous surface,ECOMP can be
minimized by moving points away from complex geometric
regions with high variability.
Regularization: To avoid undersampling in these regions,
Davieset al. [10] approximate the integral of the continu-
ous covariance matrix by weighting the points by their sur-
rounding surface area. Since this does not always prevent
the undersampling [13], as done in Burghardet al. [6], we
use a regularization within the objective function. The reg-
ularization term for each shape is a bi-Laplacian of the form

EREG =
1
n

nX

k=1


 U2(vk (x))


 2

; (5)

wherevk (x) denotes thek-th vertex of shapex. The double-
umbrella operatorU2(p) is the discrete bi-Laplacian ap-
proximation [19] computed by

U2(p) =
1

jN (p)j

X

pr 2 N (p)

U(pr ) � U(p); (6)

whereN (p) denotes the set of neighbors of vertexp within
the mesh, andU(p) = 1 =jN (p)j

P
pr 2 N (p) pr � p. The bi-

Laplacian regularizer encourages the points to be regularly
distributed over the mesh and prevents fold-overs.



4.2. Parametrization

The registration is optimized by moving points in the
surface of each face. Since the surface of the face is 2-
dimensional, moving points within the surface can be done
by re-parametrization. This requires an initial parametriza-
tion together with a continuous mapping from parameter
space to the surface of each face. We compute an initial reg-
istration for a database of 3D faces using template �tting,
and additionally unwrap the 3D template mesh in 2D pa-
rameter space to compute an initial discrete parametrization
with parameterst i 2 R2. The embedding in 2D is chosen
to minimize distortions of angles and areas. Each parame-
ter t i is mapped to the mesh vertexvi = ( x i ; yi ; zi ) 2 R3.
Figure 2 visualizes the initial parametrization in 2D param-
eter space (left) and mapped on the 3D surface (right). Due
to the full correspondence of all face shapes, this discrete
parametrization is the same for all shapes of the database.

With this discrete embedding in parameter space, a con-
tinuous mapping� is computed that maps parameters� =
(u; v) 2 R2 into the surface of the shape. A thin-plate
spline [11] de�nes this mapping, computed as

�( � ) = c+ A� + WT (� (� � t1); : : : ; � (� � tn ))T ; (7)

wherec 2 R3, A 2 R3� 2, andW 2 Rn � 3 are the parame-
ters of the mapping, and where� : R2 ! R is the function

� (h) =

(
khk2 log(khk) khk > 0;
0 khk = 0 :

(8)

The surface of� interpolates all vertices of the shape
(�( t i ) = vi ) and gives the surface with the minimum
bending energy. Figure 3 shows one initially registered
shape (left) together with the computed continuous thin-
plate spline visualized as densely approximated mesh (mid-
dle) and(u; v)-parameter lines (right). The evaluation of
� at parameters� , whereu (respectivelyv) is �xed and v
(respectivelyu) is varied by a �xed discrete step size, gives
one(u; v)-parameter line. While the spline interpolates the
geometry of the initial shape, it gives a reasonable extrapo-
lation of the shape beyond the outer border of the face.

4.3. Optimization

The objective functionE in Equation 3 is non-linear.
Due to the choice of the parametrization,E is analytically
differentiable with respect to� . The supplementary mate-
rial gives the full analytical gradient. We minimizeE us-
ing L-BFGS [23], a quasi-Newton method with linear con-
straints. These linear constraints allow for each vertex in
parameter space to specify a valid rectangular area.
Boundary constraints: For meshes with boundary,
ECOMP is minimized if the entire surface collapses into

a single point. Hence, boundary conditions need to be en-
forced. Face shapes have two boundaries, an inner bound-
ary at the mouth and an outer boundary at the end of the
acquired scan. Since landmarks are used during the ini-
tial registration, the inner boundary at the mouth is regis-
tered well. To avoid points that move from the lower to
the upper lip or vice versa, we �x the points in the 1-ring
neighborhood of the mouth boundary during optimization.
Since the outer boundary is not registered well as scans
in the database are cropped inconsistently, we allow lim-
ited movement for points in the 1-ring neighborhood of the
outer boundary. Speci�cally, the movement is restricted to
at most20mm.
Optimization schedule: Optimizing for the parameters of
all shapes at the same time is not feasible for a large pop-
ulation of shapes due to the large number of parameters
(d2d32n). Instead, we only optimize the parameters of each
shape individually as proposed by Davieset al. [10, Chapter
7.1.1]. This optimization is performed for all shapes of the
database during each iteration. Note thatE still depends on
all shapes for this shape-wise optimization, and the method
therefore still optimizes the groupwise correspondence. To
avoid bias towards any shape, the order of the shapes is ran-
domly permuted for each iteration step. Since the rigid
alignment of the shapes depends on the correspondence,
during optimization of one shape, the alignment is updated
after a few optimization steps.
Computational complexity: The computational complex-
ity of one optimization step isO(nd2

2d3 + nd2d2
3) (see sup-

plementary material for details). As shown in the following
section, our approach is signi�cantly more ef�cient than ex-
isting PCA-based MDL approaches.

5. Evaluation

This section evaluates three different tensor decomposi-
tions and our model optimization approach.
Data: For evaluation, we use models of the BU-3DFE [32]
and Bosphorus [28] databases. BU-3DFE contains 3D face
scans in neutral expression and in six prototypic expres-
sions. Bosphorus covers the six prototypic expressions and
a subset of up to28 action units per subject. Since both
databases are acquired with different scanner systems, the
resulting scans have different resolution and noise charac-
teristics. We register the face scans with a template �tting
method [27] using the provided landmarks.

For BU-3DFE we use50 randomly chosen identities in
7 expressions: neutral and the highest level of each expres-
sion. For Bosphorus we use all65 identities that are present
in all 7 expressions. In the following, we call these subsets
BU-3DFE subset and Bosphorus subset, respectively.
Model quality: We quantitatively evaluate the quality of
the optimization with the widely used measures compact-
ness, generalization and speci�city [10, Chapter 9.2]. The



Figure 4. Artifacts obtained by optimizingECOMP without regu-
larization (wREG = 0 ). Left: initial registration. Right: result.

identity and expression spaces should ideally be compact,
general and speci�c.

Generalization measures the ability of the statistical
model to represent shapes that are not part of the train-
ing. The generalization error is measured in a leave-one-out
fashion. For the identity mode, each subject is once fully
excluded from training and the resulting model is used to
reconstruct all excluded scans. The error is then measured
as the average vertex distance between all corresponding
vertices. The error for the expression mode is computed
accordingly by excluding once each expression.

Speci�city measures the ability of the statistical model to
only represent valid shapes of the object class. To measure
the speci�city of the model before and after optimization,
we randomly choose10000samples in identity and expres-
sion space and measure the average vertex distance of the
reconstruction to the training data.
Reproducibility: To facilitate evaluating the model for dif-
ferent applications, we make our optimization code and the
optimized statistical model available [3].

5.1. Tensor decompositions

We evaluate the different tensor decomposition methods
described in Section 3.2 by �tting the resulting multilinear
models to unseen 3D face scans. For this, we use a 10-fold
cross validation on the registered BU-3DFE scans. We split
the database randomly into ten groups, each with the same
ratio of male and female subjects, where all scans of one
identity belong to the same group. The error is measured
as the distance between a vertex in the �tting result and its
closest point in the face scan. The error distribution of all
three methods is nearly identical. The median vertex error
is for HOSVD1:145mm, for HOOI1:144mm and for the
Newton Grassmann method1:144 mm. Since all methods
perform almost the same, we compute the decomposition
with HOSVD in the following.

5.2. In�uence of regularization

This section evaluates the in�uence of the regulariza-
tion EREG on the BU-3DFE subset. The optimization is
performed twice, once only optimizingECOMP without
EREG and once only optimizingEREG without ECOMP .
As discussed in Section 4.1, the regularizer is needed to

Figure 5. Noise example of the database before (top) and after
(bottom) optimization. Left to right: no, low, and high noise.

Figure 6. In�uence of the initialization for different levels of noise.
Left: compactness. Middle: generalization. Right: speci�city.
Top: identity mode. Bottom: expression mode.

avoid undersampling in regions with high variability and
fold-overs. Figure 4 shows the result for one face after only
�ve iterations of optimizingECOMP . When minimizing
only ECOMP , the optimization moves points away from the
eyebrows and around the nose, resulting in sparsely sam-
pled regions. Furthermore, fold-overs at the mouth cause vi-
sual artifacts. OptimizingEREG leads to regularly sampled
meshes. However,ECOMP increases in this case. Mini-
mizing E is therefore a tradeoff between getting a compact
model and a regular mesh structure. In the following, we
empirically choosewREG = 0 :5.

5.3. In�uence of initialization

This section evaluates the robustness to noise in the ini-
tialization. State-of-the-art registration methods for faces,
as used for the initialization of our method, are able to �t
the facial surface well with sub-millimeter accuracy, but
the result is likely to contain drift within the surface. To
simulate noise regarding these methods, we use the initial



Figure 7. Visual comparison of template �tting [27] (red) and our
result (blue) for one subject in four expressions (overlap in gray).

parametrization and add two different levels of noise in the
parameter domain. The parameter values of each shape
of the BU-3DFE subset are disturbed by random Gaussian
noise. Since the 1-ring neighborhood of the mouth bound-
ary is �xed during optimization, these vertices are left with-
out noise. For both noise levels we choose noise with mean
zero and standard deviationf times the average 3D edge
length. For the lower noise level we choosef to be0:25,
for the higher0:75, respectively.

The optimization is performed on the BU-3DFE subset,
initialized with the noisy registration. The top of Figure 5
shows an example of the database without noise (left), the
lower level of noise (middle) and the higher level of noise
(right). The average 3D vertex distance of the initial shapes
to the noisy shapes over the entire database is1:11 mm for
the lower and2:50mm for the higher noise level.

Adding random noise within the surface to each ver-
tex increases the variance in 3D positions and therefore in-
creases the variability of the data. As expected, Figure 6
shows that the compactness of identity mode and expres-
sion mode decreases with increasing noise, since the mul-
tilinear model captures less variability with the same num-
ber of components. Further, the multilinear model becomes
less general and less speci�c. After15 iterations, the aver-
age compactness increases by3:8% for the low noise level,
and by8:7%for the high noise level, respectively. The aver-
age generalization error decreases by0:58mm and1:65mm
for the low and high noise level, the average speci�city de-
creases by0:43mm and1:26mm for the low and high noise
level. After optimization, the model quality for both lev-
els of noise is comparable to the optimization of the data
without noise. Hence, our optimization method effectively
reduces variability caused by drift.

5.4. Comparison

This section compares our approach to two state-of-the-
art registration methods for 3D faces based on template �t-
ting [27] and PCA-based groupwise correspondence [10].
Template �tting: We compare our optimization to tem-
plate �tting on the BU-3DFE and Bosphorus subsets. For
the two subsets, Figures 8 and 9 show the compactness,
generalization and speci�city for template �tting and after
15 iterations of the multilinear optimization. For the BU-

Figure 8. Comparison of template �tting [27], PCA optimiza-
tion [10] (PCA opt.) and multilinear model optimization (MM
opt.) on BU-3DFE subset. Left: compactness. Middle: general-
ization. Right: speci�city. Top: identity mode. Bottom: expres-
sion mode.

Figure 9. Comparison of template �tting [27] and multilinear
model optimization (MM opt.) on Bosphorus subset. Left: com-
pactness. Middle: generalization. Right: speci�city. Top: identity
mode. Bottom: expression mode.

3DFE subset, the average compactness increases by3:0%,
and the average generalization and speci�city decrease by
0:25mm and 0:32mm, respectively. For the Bosphorus
subset, the average compactness increases by1:7%, and the
average generalization and speci�city decrease by0:15mm
and0:16mm, respectively.

Figure 7 visually compares the template �tting (red) to
our result (blue) for one subject of the BU-3DFE subset.
Before optimization, the shape of the outer boundary dif-
fers. The optimization decreases the face for the �rst and
fourth expressions at the cheek, for the second expression
at the jaw, and for the third expression at the forehead. Ex-
pressions one, two and three are extended at the forehead.
After 15 iterations, the outer boundaries are similar.

To demonstrate the ability of our method to optimize
over large sets of shapes, we consider a second subset of the
Bosphorus database consisting of39 identities performing



26 action units each, leading to a total of over1000shapes.
To keep95%of the data variability after template �tting, a
total of 27 components are necessary, while after15 itera-
tions of our optimization,20components suf�ce. As for the
other subsets, generalization and speci�city also improve
after optimization. To the best of our knowledge, this is
the �rst time a registration optimization based on MDL has
been applied to such a large set of shapes.

For all three datasets the model improves signi�cantly
during optimization, leading to a more compact model with
improved generalization and speci�city.
PCA: For brevity, we abbreviate PCA optimization by PCA
opt. and our method by MM opt. during the discussion of
the comparison. We start by comparing the computational
complexity of the two methods. In the supplementary ma-
terial, we show that one optimization step for PCA opt. has
complexityO(nd2

2d2
3), while one optimization step of MM

opt. has complexityO(nd2
2d3 + nd2d2

3). For the BU-3DFE
subset our non-optimized implementation takes about16:2h
for MM opt. and about21:5h for PCA opt. for one iteration
when executed on a standard PC.

Figure 8 quantitatively compares PCA opt. and MM opt.,
both after15 iterations. While MM opt. gives signi�cant
improvements, PCA opt. only slightly improves the corre-
spondence. For small subsets PCA opt. gives signi�cant
improvements within few iterations. Our experiments sug-
gest that for an increasing number of shape space parame-
ters, an increasing number of iterations is required. Since
MM opt. models identity and expression independently, the
number of shape space parameters isd2+ d3, while for PCA
opt. the number of shape space parameters isd2d3.

Hence, our method gives better improvements after the
same number of iterations and is computationally faster
than existing linear optimization methods.

5.5. Discussion

Parametrization: Our proposed method optimizes the cor-
respondence by re-parametrizing the shapes guided by the
optimization of a multilinear compactness objective func-
tion. This re-parametrization requires a continuous repre-
sentation of the surface for each shape. While any kind of
continuous mapping can be used, we establish this by a thin-
plate spline. For other continuous mappings, the gradient
changes, and therefore depending on the mapping (e.g. for
mappings without analytical gradient)E must be optimized
with a different method.
Data quality: Computing this continuous surface mapping
assumes the original face scans to be regularly densely sam-
pled with points that are within the surface of the scan. To
get this sampling, any existing template �tting method can
be used. For face scans with partial occlusions or strong
distortions, template �tting methods fail, since they are un-
able to estimate the real face surface in these regions. To

optimize the registration for scans with strong distortions,
we would either need another initialization that gives a rea-
sonable surface estimation within the occluded and noisy
regions (e.g. Bruntonet al. [5]), or the optimization ofE
must be allowed to leave the surface of the disturbed scan
guided by the underlying multilinear model.

Computational complexity: While the multilinear corre-
spondence optimization is computationally more ef�cient
than previous linear methods, due to the groupwise objec-
tive function, the computational complexity is still high.
Our experiments show that only a low number of iterations
are necessary to get signi�cant improvements. Note that the
registration can be seen as pre-processing that only needs
to be done once. The application for larger datasets would
require the use of a compute cluster to exploit the full po-
tential of the parallelizability of the method (especially the
gradient computation).

Extensions: Our method is generally applicable to other
classes of multilinearly distributed data. The geometry of
the shapes can contain no or multiple holes as long as the
boundaries of the holes are constrained. The regulariza-
tion EREG prevents fold-overs around these holes. Fur-
thermore, the extension of our method to more modes is
straightforward,e.g. for faces to associate the fourth mode
with viseme or age.

6. Conclusion

We have presented the �rst method for multilinearly
distributed data that jointly improves a given registration
and a multilinear model. A continuous representation of
each shape allows to optimize the registration with a quasi-
Newton method. We have evaluated our method on scans
of two databases and have demonstrated that our method is
robust to noise in the initial registration. A key advantage
of our approach over existing linear MDL methods is its in-
creased computational ef�ciency, which allows for the �rst
time to apply an approach based on MDL to databases con-
taining over 1000 shapes. We have shown that using the
ef�cient HOSVD method to compute the multilinear model
performs similarly when reconstructing unseen face data to
more elaborate tensor decompositions. To facilitate experi-
ments for different application scenarios, we make our opti-
mization code and the optimized statistical model available.
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