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Abstract a challenging task that many methods aim to soévg (24,

26,17, 14, 27]). Given a good registration, a statistical face
Multilinear face models are widely used to model the model can be learned. In computer vision and graphics,
space of human faces with expressions. For databases ostatistical face models are usedy to reconstruct the 3D
3D human faces of different identities performing multiple geometry of the face from 2D images [1], to recognize facial
expressions, these statistical shape models decouple idenexpressions [24], to transfer expressions between images or
tity and expression variations. To compute a high-quality videos [30], or to change expressions in 3D videos [31].

multilinear face model, the quality of the registration of the  Statistical face models can also be used to reconstruct
database of 3D face scans used for training is essential.the 3D geometry from noisy or partia”y occluded face
Meanwhile, a multilinear face model can be used as an ef-scans [5] and are therefore directly applicable for registra-
fective prior to register 3D face scans, which are typically tion. Furthermore, registration methods with prior learned
noisy and incomplete. Inspired by the minimum description knowledge outperform model-free methods like template
length approach, we propose the rst method to jointly op-  tting [25, 2]. Summing up, this is a chicken-and-egg prob-
timize a multilinear model and the registration of the 3D lem: given a good registra’[ion, a statistical model can be
scans used for training. Given an initial registration, our |earned, and given a representative statistical model, a good
approach fully automatically improves the registration by registration can be computed. The quality of a given statis-
optimizing an objective function that measures the compact-tical model can be measured [10, Chapter 3.3.1], and due
ness of the multilinear model, resulting in a sparse model. to the dependency of the statistical model on a registration,
We choose a continuous representation for each face shapghis measurement also evaluates the underlying registration.
that allows to use a quasi-Newton method in parameter  \jathods that aim at jointly optimizing the registration
space for optimization. We show that our approach is com- 504 5 statistical model have been developed for princi-

putationally signi cantly more ef cient and leads to corre- al component analysis (PCA2.¢ [10, Chapter 4], [21]).

spopdences _of.higher quality than existing methods basecEurthermore, variants of this linear method like part-based
on linear statistical models. This allows us to evaluate our p-p [6], kernel PCA [8] or human body specic ap-

approach on large standard 3D face databases and in the

f noisv initializati proaches [16] exist. These methods measure the model
presence of noisy initializations.

quality and change the registration such that the quality of
the model and the registration improve at the same time.
. Since the model quality depends on all shapes, these meth-
1. Introduction ods are called groupwise optimization methods. Linear
The human face is one important factor for any kind of PCA-Dased methods have been proven to outperform dif-
social interaction in our daily life. This motivates many dif- €re€nt pairwise correspondence optimization methods [9].

ferent elds such as human computer interaction, medicine, ~Since the variations in databases of human faces from
ergonomics or security, to investigate the human face. Sincedifferent identities performing different expressions cannot
many of these areas are interested in the 3D geometry of thde modeled well using a linear space, the existing methods
face, the number of publicly available 3D face databases in-are not suitable for optimizing the correspondence of human
creased over the last years. As the manual analysis of largdaces. The space of human faces in various expressions can
databases is intractable, automatic data driven and statisticdpe well modeled using a multilinear model [30, 24, 31, 2, 5],
approaches are widely used to analyze the structure of thevhich is a higher-order generalization of a PCA model.
data. To compute statistics, all shapes of the dataset need to This motivates us to propose an approach to optimize
be in correspondence [10, Chapter 1]. the correspondence for 3D face databases based on multi-
Computing these correspondences for human face data isinear statistical models. The correspondence is optimized



based on the minimum description length (MDL) principle, Yang et al. [31] reconstruct the 3D face shape from 2D
which leads to a sparse multilinear model. A key advan- videos and exploit the decoupling of identity and expres-
tage of extending MDL to multilinear models is a reduced sion variations to modify the identity or expression within
parameter space, which can be optimized ef ciently. The the videos. Bolkart and Wuhrer [2] use a multilinear model
main challenge is that while for the linear case PCA pro- to register a large database of 3D faces in motion and per-
vides an optimal low-dimensional space, the solution for form analysis on the resulting registration. Brunétial. [5]
the multilinear case is NP-hard to compute [15]. To nd learn multiple localized multilinear models and use these to
a good basis for face models, we compare different tensorreconstruct models from noisy and occluded face scans.
decompositions for their ability to reconstruct unseen face  As these methods use a multilinear model for 3D faces
data. Another previously unaddressed challenge related taf multiple identities and expressions, they employ the same
3D face data is to allow for manifold boundaries during op- model as our method. However, none of them aim at opti-
timization, which is needed as the face has a mouth and amizing the correspondence using the learned model.
outer boundary. We solve this issue ef ciently by introduc- Registration optimization: While some prior works in
ing constraints in the optimization framework. machine learning explore the idea of jointly learning a
The main contributions of this work are: (1) we intro- model and correspondence informatiang( [4, 29, 18]),
duce the rst fully automatic groupwise correspondence op- our method is most related to methods that aim to jointly
timization approach for multilinearly distributed data, and optimize the registration of a set of 3D shapes and a learned
(2) we show that our approach is computationally signi - statistical model. Kotcheff and Taylor [21] propose a group-
cantly more ef cient and leads to correspondences of higherwise correspondence optimization based on a PCA model
quality than existing PCA-based optimization methods. that explicitly favors compact models. Davies al [10,
Chapter 4] give an overview of different objective func-
2. Related work tions for correspondence optimization and motivate an in-
formation theoretic objective function minimizing the de-

gemplat(ra]-bda_sed Ifac:jal corrﬁszongencg computation: scription length of the data. The basic concept of minimum
ur method is related to methods that aim to compute Cor'description length approaches is to minimize the length of

respoqdences be’Fween sets of shapes. Wh|le many methy message that is transmitted from a sender to a receiver.
ods exist to establish correspondence for arbitrary classes o hey encode the data with a PCA model and alter the cor-

shapes, we focus on 3D face re_gistration methqu. Given arespondence such that the number of bits needed to de-
sparse set of 3D landmarks, Mpipeetsal. [24] register 3D scribe the model and the encoded data is minimal. Daties

Iaces m(;/alrloFl)Js ex?reslsmzrgs with an eIasuc;Ifly deforrgalbleaL [9] show that MDL outperforms state-of-the-art registra-
ace model. Passalet al. [26] tan annotated face model i, methods for medical datasets. Golineeel. [13] com-

E) the siar; bi/7solv:_r:giha sfecor?dtorderlt_cm;feren?al et(qjuahon. pare different objective functions. They show that while the
uanget al. [17] split the face into multiple parts and per- oo minant of the covariance matrix is easier to optimize,

form a deforma_tion of eac_h part_to tan input fage. G the results are comparable to results produced by MDL.
al. [14] use a thin-plate spline guided template tling to reg- All these methods model the data with one linear PCA

ister 3D face scans. Pa al. [25] use a sparse deformable model. In contrast, Burgharet al [6] use a part-based

model for registration. They learn a dictionary on a set of .- . ~4e1 and Chest al [8] model the data with a

registered faces and register a new face by restricting then n-linear kernel PCA. Hirshbewg al. [16] derive a skele-

c_orr_espondences to be a sparse representation of the Iearng n based approach speci cally for human body shapes to

dictionary. Salazaet al [27] use a blendsh.ape mpdel to t jointly optimize the registration and a statistical model.

t.he. expression foIIowed_ by a template tting using a NoNn- = \jpne of these methods can model 3D faces with vary-

rigid iterative closest point method to get the facial details. ing identities and expressions. To allow this, we introduce
Al offt;hese .metrodsd nq a good. (:,Eor:esptcr)]n(i[ie':nce:f bUtI the rst groupwise correspondence optimization approach

none oftnem aim at producing a registration that is optimal ¢, multilinearly distributed data. Furthermore, while most

for statistical modeling. Note that any of these methods can 1 athods assume the object to be a closed manifold, our ap-

be u_se_d o initialize our Optlmlzatlon approach. . proach handles manifolds with multiple boundaries.
Statistical face models: Given a set of 3D shapes in full

correspondence, various methods can perform statistica
analysis. We focus our discussion on multilinear shape
spaces for 3D faces. Vlasit al. [30] use a multilinear This section introduces the multilinear model and dif-
model for a database of human faces that decouples faferent tensor decompositions to derive the model. Multi-
cial shape, expression, and viseme to transfer facial perlinear models can effectively model statistical variations of
formance between 2D videos. Mpipess al. [24] use a  faces due to identity and expression as it decouples these
multilinear model for identity and expression recognition. two types of shape variation.

B. Multilinear shape space



3.1. Multilinear model

Given a set of registered and spatially aligned 3D face

scans ofd, identities inds expressions each, every face is
represented by a vectbr= (Xi;Vy1;21; ;xn;yn;zn)T
that consists oh vertices(x;;y;; z). We center each face
by subtracting the mean over all training fatesd arrange
the centered faces in a 3-mode tengor2 R3" d2 ds

where modes describe the different axes of a tensor. The

data are placed withii, such that the vertex coordinates
are associated with the rst mode, the different identities

Registered Shapes  Multilinear Model

g

T+

Identity Expressiol

L-BFGS <+—Ecowmp + WrecERrec
Optimization Model Evaluation
Figure 1. Overview of the iterative multilinear registration.

with the second mode, and the different expressions with
the third mode ofA. The decomposition oA into
performed a\(n) = Up S, V], whereU, 2 R% 9 con-
tains the left singular vectors @f(,,). Truncating columns
then reduces the dimensions of identity and expression
space. The multilinear model is then computedvas=
A ,UJ 3U]. Even for giverm, andms, the truncated
HOSVD does not give an optimal approximationfof
HOOI: Initialized by HOSVD, this method iteratively op-
timizes the Tucker decomposition. Within each iteration,
both factor matrices are updated by xing one and updating
the other. That is, for a xed mode-2 factor matrix, a ten-
sorX = A, U] is computed, andls is updated by the
m3 left singular vectors oK) . A similar computation is
performed for a xed mode-3 factor matrix. While HOOI
gives a better approximation #f than HOSVD, it does not
necessarily nd a stationary point.
Newton-Grassmann optimization: Initialized by
HOSVD, the Newton-Grassmann optimization approach
decomposition. The goal is to nd the best Tucker decom- constrains each factor matrix to a Grassmannian manifold,
position with a lower-dimensional tenshr that is as close  an equivalence class of orthogonal matrices. The Tucker
as possible té\. The quality of the tensor approximation decomposition is then computed by a non-linear Newton
is measured by the norm of the residual. Computing the method on the product of two Grassmannian manifolds.
best Tucker decomposition is NP-hard [15]. Furthermore, This method converges to a stationary point.
in contrast to decomposing a matrix into orthogonal matri-  The evaluation of the different tensor decompositions
ces (computed using singular value decomposition (SVD)), shows that applied to reconstructing unseen face data, they
Tucker decompositions are not unique. An exact Tucker de-perform almost identical (see Section 5.1). Since HOSVD
composition can be computedrif, = rank (A) for all is the most ef cient approach, in the following, we use
n. Here,A(,) denotes the matrix unfolding & in the di- HOSVD to learn the multilinear model.
rection ofn-th mode (all vectors in the direction of timeth
mode form the columns &k (). If m, <rank (A,) for
at least ona, the decomposition approximatas

The following describes different methods to compute  This section introduces the concept of groupwise cor-
the Tucker decomposition. Section 5.1 evaluates for eachrespondence optimizations and describes our approach for
method its ability to reconstruct unseen data when appliedmultilinearly distributed data. Given a set of shapes in cor-
for model tting. We compare the three tensor decompo- respondence, groupwise correspondence optimization min-
sitions described by Kolda and Bader [20], namely: higher imizes an objective function that measures the quality of the
order SVD (HOSVD) [22], higher order orthogonal itera- correspondence depending on all shapes. Using a statistical
tion (HOOI) [22], and a Newton-Grassmann optimization model that describes the variation of the shapes, the objec-
approach [12]. All these methods compute a Tucker de-tive function measures favorable properties of the model.
composition for given maximum mode ranks andms. For PCA models, Kotcheff and Taylor [21] choose the
HOSVD: HOSVD is a higher-order generalization of ma- objective function to be the determinant of the covariance
trix SVD. To compute the matriced,,, a matrix SVD is matrix, which explicitly favors the induced linear statistical

A=M U 3Us; (1)
where , denotes th@-th mode product, results in a tensor
M2 R3" M2 M3 called multilinear model, and orthogo-
nal factor matriced), 2 R%2 Mz gndU; 2 R% M:. The
n-th mode producM , U, of tensorM with matrix U,
replaces each vecton 2 R™~ aligned withi-th mode by
U,m 2 R% . The multilinear model represents a registered
3D facef 2 R®" as

f f+M Lwy 3wi; )
wherew, 2 R™2 andwsz 2 R™: are the identity and ex-
pression coef cients.

3.2. Tensor decompositions

The decomposition oA in Equation 1 is called Tucker

4. Groupwise correspondence optimization



model to be compact. The compactness of a linear statistical
model can be maximized by minimizing the variability of
the model, measured by the trace of the covariance matrix.

Compactness measures the variability captured by a
model. A compact model can describe instances of a given
dataset with the minimum number of parameters and has
minimal variance. For models of different compactness that 5
describe the same data, the model with higher compactnesEigUfe 2. Initial surface pgram_etrization of the 3_D face template.
and hence lower variance is favorable. It has been shownl€ft: 2D parameter domain. Right: 3D parametrization.
that minimizing the variance of a PCA model performs sim-
ilarly to information theoretic approaches that aim at mini-
mizing the description length of the model [13].

Inspired by these previous works, we develop the rst
MDL-based optimization approach for multilinear models.
This extension is challenging because the notion of com-
pactness needs to be extended to multilinear models, where
optimal tensor approximation is NP-hard. For 3D face
data, a further challenge arises from manifold boundaries.Figure 3. Parametrization for one shape. Left: initialization. Mid-
Figure 1 gives an overview of our multilinear optimiza- dle: thin-plate spline. Righttu; v)-parameter lines.
tion approach. Given a set of 3D faces of different iden-
tities performing different expressions with an initial corre-
spondence, we iteratively optimize the correspondence. Weto avoid singularities oEcomp for vanishing eigenvalues.
compute a multilinear model on the registered data, and it-Equivalent to HOSVD, the mod2-and mode3 covariance
eratively improve the model. In each iteration, the quality matrices are computed §§A(z) A(Tz) and %A@) A(TS) .
of the model is measured using a groupwise objective func-  The energyEcomp is minimized by moving points
tion (Section 4.1). The registered shapes are representedithin the continuous surface of each shape. Since the com-
using a continuous parametrization (Section 4.2), and theputation of the covariance only considers a discrete number
objective function is optimized in parameter space with a of points instead of the continuous surfaBgowp can be
quasi-Newton method (Section 4.3). minimized by moving points away from complex geometric
4.1. Multilinear objective function regions with high variability.

) o _ ) Regularization: To avoid undersampling in these regions,

Our groupwise objective function consists of two parts: payieset al. [10] approximate the integral of the continu-

a compactness energitomp , and aregularization energy  oys covariance matrix by weighting the points by their sur-

Erec . We therefore aim to minimize rounding surface area. Since this does not always prevent
the undersampling [13], as done in Burghatdl. [6], we
E = Ecomp + WRrec Erec ; ®) use a regularization within the objective function. The reg-

wherewgreg is a weight that controls the in uence of the ularization term for each shape is a bi-Laplacian of the form
regularization. We now describe both terms in more detail.

Compactness: The compactness of a multilinear model 10
can be measured as the percentage of data variability cap- Ereg = — U2 (v (X)) 2; (5)
tured in the rstk components of each mode, wheve= L

sparse model that captures all of the variability in few com- wherev, (x) denotes thé&-th vertex of shapg. The double-
ponents. To encourage a sparse model, we introduce almprella operatotJ2(p) is the discrete bi-Laplacian ap-
energy on the variability of the identity and expression sub- proximation [19] computed by
spaces. Like Kotcheff and Taylor [21], we choose a log-sum
penalty function, as log-sum functions are known to encour-
age sparsity by heavily punishing small values [7]. That is, U2(p) = —— U(p,) U(p); (6)
we aim to minimize IN (p)] P 2N (p)
X2 X3
Ecowr = o @+ 2+ 20 (P + 2 @)
2 3

. - whereN (p) denotes the set of geighbors of verfewithin

the mesh, and (p) = 1 =jN (p)j 2N (p Pr P The bi-
where i(”) denotes theé-th eigenvalue of the mode-co- Laplacian regularizer encourages the points to be regularly

variance matrix. Small regularization constan{sare used  distributed over the mesh and prevents fold-overs.



4.2. Parametrization

The registration is optimized by moving points in the

surface of each face. Since the surface of the face is 2-
dimensional, moving points within the surface can be done

by re-parametrization. This requires an initial parametriza-
tion together with a continuous mapping from parameter

space to the surface of each face. We compute an initial reg

istration for a database of 3D faces using template tting,
and additionally unwrap the 3D template mesh in 2D pa-
rameter space to compute an initial discrete parametrizatio
with parameters; 2 R2. The embedding in 2D is chosen

to minimize distortions of angles and areas. Each parame

tert; is mapped to the mesh vertex = (X;;yi;z) 2 R>.
Figure 2 visualizes the initial parametrization in 2D param-

eter space (left) and mapped on the 3D surface (right). Due
to the full correspondence of all face shapes, this discrete

parametrization is the same for all shapes of the database.

With this discrete embedding in parameter space, a con-

tinuous mapping is computed that maps parameters
(u;v) 2 R? into the surface of the shape. A thin-plate
spline [11] de nes this mapping, computed as

( )=c+tA +WT(( )" (7)
wherec2 R3, A 2 R® 2, andW 2 R" 3 are the parame-
ters of the mapping, and where: R? ! R is the function

(
khk? log(khk) khk > 0;

h) =
(") 0 khk =0:

®)

The surface of interpolates all vertices of the shape
(( ti) = vi) and gives the surface with the minimum
bending energy. Figure 3 shows one initially registered
shape (left) together with the computed continuous thin-
plate spline visualized as densely approximated mesh (mid
dle) and(u;v)-parameter lines (right). The evaluation of
at parameters , whereu (respectively) is xed andv
(respectively) is varied by a xed discrete step size, gives
one(u; v)-parameter line. While the spline interpolates the

geometry of the initial shape, it gives a reasonable extrapo-

lation of the shape beyond the outer border of the face.

4.3. Optimization

The objective functiorE in Equation 3 is non-linear.
Due to the choice of the parametrizatidh,is analytically
differentiable with respect to . The supplementary mate-
rial gives the full analytical gradient. We minimiZe us-
ing L-BFGS [23], a quasi-Newton method with linear con-
straints. These linear constraints allow for each vertex in
parameter space to specify a valid rectangular area.
Boundary constraints: For meshes with boundary,
Ecomp is minimized if the entire surface collapses into

a single point. Hence, boundary conditions need to be en-
forced. Face shapes have two boundaries, an inner bound-
ary at the mouth and an outer boundary at the end of the
acquired scan. Since landmarks are used during the ini-
tial registration, the inner boundary at the mouth is regis-
tered well. To avoid points that move from the lower to
the upper lip or vice versa, we x the points in the 1-ring

‘neighborhood of the mouth boundary during optimization.

Since the outer boundary is not registered well as scans
in the database are cropped inconsistently, we allow lim-

Nted movement for points in the 1-ring neighborhood of the

outer boundary. Speci cally, the movement is restricted to

at most20 mm.

Optimization schedule: Optimizing for the parameters of

all shapes at the same time is not feasible for a large pop-
ulation of shapes due to the large number of parameters
(d2d32n). Instead, we only optimize the parameters of each
shape individually as proposed by Davedsl. [10, Chapter
7.1.1]. This optimization is performed for all shapes of the
database during each iteration. Note tRattill depends on

all shapes for this shape-wise optimization, and the method
therefore still optimizes the groupwise correspondence. To
avoid bias towards any shape, the order of the shapes is ran-
domly permuted for each iteration step. Since the rigid
alignment of the shapes depends on the correspondence,
during optimization of one shape, the alignment is updated
after a few optimization steps.

Computational complexity: The computational complex-

ity of one optimization step i©(nd3ds + nd,d3) (see sup-
plementary material for details). As shown in the following
section, our approach is signi cantly more ef cient than ex-
isting PCA-based MDL approaches.

5. Evaluation

This section evaluates three different tensor decomposi-
tions and our model optimization approach.
Data: For evaluation, we use models of the BU-3DFE [32]
and Bosphorus [28] databases. BU-3DFE contains 3D face
scans in neutral expression and in six prototypic expres-
sions. Bosphorus covers the six prototypic expressions and
a subset of up t@8 action units per subject. Since both
databases are acquired with different scanner systems, the
resulting scans have different resolution and noise charac-
teristics. We register the face scans with a template tting
method [27] using the provided landmarks.

For BU-3DFE we us&0 randomly chosen identities in
7 expressions: neutral and the highest level of each expres-
sion. For Bosphorus we use &b identities that are present
in all 7 expressions. In the following, we call these subsets
BU-3DFE subset and Bosphorus subset, respectively.
Model quality: We quantitatively evaluate the quality of
the optimization with the widely used measures compact-
ness, generalization and speci city [10, Chapter 9.2]. The



Figure 4. Artifacts obtained by optimizir§comp Without regu-
larization (vrec = 0). Left: initial registration. Right: result.

identity and expression spaces should ideally be compact,
general and speci c.

Generalization measures the ability of the statistical
model to repres_ent.shapes _that are not.part of the tralr]_Figure 5. Noise example of the database before (top) and after
ing. The generalization error is measured in a leave-one-ou bottom) optimization. Left to right: no, low, and high noise
fashion. For the identity mode, each subject is once fully T '
excluded from training and the resulting model is used to
reconstruct all excluded scans. The error is then measured
as the average vertex distance between all corresponding
vertices. The error for the expression mode is computed
accordingly by excluding once each expression.

Speci city measures the ability of the statistical model to
only represent valid shapes of the object class. To measure
the speci city of the model before and after optimization,
we randomly choos&0000samples in identity and expres-
sion space and measure the average vertex distance of the
reconstruction to the training data.

Reproducibility: To facilitate evaluating the model for dif-
ferent applications, we make our optimization code and the

optimized statistical model available [3]. Figure 6. In uence of the initialization for different levels of noise.

5.1. Tensor decompositions Left: compactness. Middle: generalization. Right: speci city.
T Top: identity mode. Bottom: expression mode.

We evaluate the different tensor decomposition methods
described in Section 3.2 by tting the resulting multilinear
models to unseen 3D face scans. For this, we use a 10-fold@void undersampling in regions with high variability and
cross validation on the registered BU-3DFE scans. We splitfold-overs. Figure 4 shows the result for one face after only
the database randomly into ten groups, each with the sameVe iterations of optimizingEcomp . When minimizing
ratio of male and female subjects, where all scans of one@nly Ecomp . the optimization moves points away from the
identity belong to the same group. The error is measuredeyebrows and around the nose, resulting in sparsely sam-
as the distance between a vertex in the tting result and its Pled regions. Furthermore, fold-overs at the mouth cause vi-
closest point in the face scan. The error distribution of all Sual artifacts. Optimizingrec leads to regularly sampled
three methods is nearly identical. The median vertex errormeshes. HoweveEcomp increases in this case. Mini-
is for HOSVD 1:145mm, for HOOI1:144mm and for the mizing E is therefore a tradeoff between getting a compact
Newton Grassmann methddi44 mm. Since all methods Model and a regular mesh structure. In the following, we
perform almost the same, we compute the decompositionempirically choosevgec = 0:5.

with HOSVD in the following. 5.3. In uence of initialization

5.2 In uence of regularization This section evaluates the robustness to noise in the ini-

This section evaluates the in uence of the regulariza- tialization. State-of-the-art registration methods for faces,
tion Egec on the BU-3DFE subset. The optimization is as used for the initialization of our method, are able to t
performed twice, once only optimizinBcomp Without the facial surface well with sub-millimeter accuracy, but
Erec and once only optimizindgegres Without Ecomp - the result is likely to contain drift within the surface. To
As discussed in Section 4.1, the regularizer is needed tosimulate noise regarding these methods, we use the initial



Figure 7. Visual comparison of template tting [27] (red) and our
result (blue) for one subject in four expressions (overlap in gray).

parametrization and add two different levels of noise in the
parameter domain. The parameter values of each shape
of the BU-3DFE subset are disturbed by random Gaussian
noise. Since the 1-ring neighborhood of the mouth bound- Figure 8. Comparison of template tting [27], PCA optimiza-
ary is xed during optimization, these vertices are left with- tion [10] (PCA opt.) and multilinear model optimization (MM
out noise. For both noise levels we choose noise with meanoPt.) on BU-3DFE subset. Left: compactness. Middle: general-
zero and standard deviatidntimes the average 3D edge iz_ation. Right: speci city. Top: identity mode. Bottom: expres-
length. For the lower noise level we chodséo be0:25, sion mode.
for the higher0:75, respectively.

The optimization is performed on the BU-3DFE subset,
initialized with the noisy registration. The top of Figure 5
shows an example of the database without noise (left), the
lower level of noise (middle) and the higher level of noise
(right). The average 3D vertex distance of the initial shapes
to the noisy shapes over the entire databadelis mm for
the lower and:50 mm for the higher noise level.

Adding random noise within the surface to each ver-
tex increases the variance in 3D positions and therefore in-
creases the variability of the data. As expected, Figure 6
shows that the compactness of identity mode and expres-
sion mode decreases with increasing noise, since the mul-
tilinear model captures less variability with the same num- Figure 9. Comparison of template tting [27] and multilinear
ber of components. Further, the multilinear model becomesmodel optimization (MM opt.) on Bosphorus subset. Left: com-
less general and less speci c. Aftéb iterations, the aver-  pactness. Middle: generalization. Right: speci city. Top: identity
age compactness increases3B9 for the low noise level,  mode. Bottom: expression mode.
and by8:7%for the high noise level, respectively. The aver-
age generalization error decrease®iH8mm and1l:65mm
for the low and high noise level, the average speci city de-
creases b®:43mm and1:26mm for the low and high noise
level. After optimization, the model quality for both lev-
els of noise is comparable to the optimization of the data
without noise. Hence, our optimization method effectively
reduces variability caused by drift.

3DFE subset, the average compactness increasg®y
and the average generalization and speci city decrease by
0:25mm and 0:32mm, respectively. For the Bosphorus
subset, the average compactness increas@bf and the
average generalization and speci city decreas@fipmm
and0:16mm, respectively.
Figure 7 visually compares the template tting (red) to
5.4. Comparison our result (blue) for one subject of the BU-3DFE subset.
Before optimization, the shape of the outer boundary dif-
This section compares our approach to two state-of-the-fers. The optimization decreases the face for the rst and
art registration methods for 3D faces based on template t- fourth expressions at the cheek, for the second expression
ting [27] and PCA-based groupwise correspondence [10]. at the jaw, and for the third expression at the forehead. Ex-
Template tting: We compare our optimization to tem- pressions one, two and three are extended at the forehead.
plate tting on the BU-3DFE and Bosphorus subsets. For After 15iterations, the outer boundaries are similar.
the two subsets, Figures 8 and 9 show the compactness, To demonstrate the ability of our method to optimize
generalization and speci city for template tting and after over large sets of shapes, we consider a second subset of the
15 iterations of the multilinear optimization. For the BU- Bosphorus database consisting3&identities performing



26 action units each, leading to a total of ou€X00shapes.  optimize the registration for scans with strong distortions,
To keep95% of the data variability after template tting, a we would either need another initialization that gives a rea-
total of 27 components are necessary, while aftBritera- sonable surface estimation within the occluded and noisy
tions of our optimization20 components suf ce. As forthe  regions é.g Bruntonet al [5]), or the optimization ofe
other subsets, generalization and speci city also improve must be allowed to leave the surface of the disturbed scan
after optimization. To the best of our knowledge, this is guided by the underlying multilinear model.

the rst time a registration optimization based on MDL has Computational complexity: While the multilinear corre-
been applied to such a large set of shapes. spondence optimization is computationally more ef cient

For all three datasets the model improves signi cantly than previous linear methods, due to the groupwise objec-
during optimization, leading to a more compact model with tive function, the computational complexity is still high.
improved generalization and speci city. Our experiments show that only a low number of iterations
PCA: For brevity, we abbreviate PCA optimization by PCA  are necessary to get signi cantimprovements. Note that the
opt. and our method by MM opt. during the discussion of registration can be seen as pre-processing that only needs
the comparison. We start by comparing the computationalto be done once. The application for larger datasets would
complexity of the two methods. In the supplementary ma- require the use of a compute cluster to exploit the full po-
terial, we show that one optimization step for PCA opt. has tential of the parallelizability of the method (especially the
complexityO(nd3d3), while one optimization step of MM gradient computation).
opt. has complexity(nd3dz + nd,d3). For the BU-3DFE
subset our non-optimized implementation takes ath612h
for MM opt. and abou®1:5h for PCA opt. for one iteration
when executed on a standard PC.

Figure 8 quantitatively compares PCA opt. and MM opt.,
both afterl5 iterations. While MM opt. gives signi cant
improvements, PCA opt. only slightly improves the corre-
spondence. For small subsets PCA opt. gives signi cant
improvements within few iterations. Our experiments sug-
gest that for an increasing number of shape space parame-
ters, an increasing number of iterations is required. Since6. Conclusion
MM opt. models identity and expression independently, the
number of shape space parameteds is ds, while for PCA We have presented the rst method for multilinearly
opt. the number of shape space parametedsds. distributed data that jointly improves a given registration

Hence, our method gives better improvements after theand a multilinear model. A continuous representation of
same number of iterations and is computationally faster €ach shape allows to optimize the registration with a quasi-

Extensions: Our method is generally applicable to other
classes of multilinearly distributed data. The geometry of
the shapes can contain no or multiple holes as long as the
boundaries of the holes are constrained. The regulariza-
tion Egrec prevents fold-overs around these holes. Fur-
thermore, the extension of our method to more modes is
straightforwardge.g for faces to associate the fourth mode
with viseme or age.

than existing linear optimization methods. Newton method. We have evaluated our method on scans
of two databases and have demonstrated that our method is
5.5. Discussion robust to noise in the initial registration. A key advantage

of our approach over existing linear MDL methods is its in-
creased computational ef ciency, which allows for the rst
ime to apply an approach based on MDL to databases con-
taining over 1000 shapes. We have shown that using the

Parametrization: Our proposed method optimizes the cor-
respondence by re-parametrizing the shapes guided by th
optimization of a multilinear compactness objective func-

tion. This re-parametrization requires a continuous repre- ef cient HOSVD method to compute the multilinear model

sentation of the surface for each shape. While any kind of .. :
: . . . - performs similarly when reconstructing unseen face data to
continuous mapping can be used, we establish this by a thin-

) X X . more elaborate tensor decompositions. To facilitate experi-
plate spline. For other continuous mappings, the gradient : C ; .
. . ments for different application scenarios, we make our opti-
changes, and therefore depending on the maprgfor o o o .
f . . : g mization code and the optimized statistical model available.
mappings without analytical gradierif) must be optimized
with a different method.
Data quality: Computing this continuous surface mapping Acknowledgments
assumes the original face scans to be regularly densely sam-
pled with points that are within the surface of the scan. To  We thank Arnur Nigmetov for help with the comparison
get this sampling, any existing template tting method can of the different tensor decompositions, and Alan Brunton,
be used. For face scans with partial occlusions or strongand Michael Wand for helpful discussions. This work has
distortions, template tting methods fail, since they are un- been partially funded by the German Research Foundation
able to estimate the real face surface in these regions. TqWU 786/1-1, Cluster of Excellence MMCI).
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