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Abstract. Analysing and understanding population-specific cardiac func-
tion is a challenging task due to the complex dynamics observed in both
healthy and diseased subjects and the difficulty in quantitatively com-
paring the motion in different subjects. It was proposed to use affine
parameters extracted from a Polyaffine motion model for a group of sub-
jects to represent the 3D motion regionally over time for a group of
subjects. We propose to construct from these parameters a 4-way tensor
of the rotation, stretch, shear, and translation components of each affine
matrix defined in an intuitive local coordinate system, stacked per re-
gion, for each affine component, over time, and for all subjects. From this
tensor, Tucker decomposition can be applied with a constraint of spar-
sity on the core tensor in order to extract a few key, easily interpretable
modes for each subject. Using this construction of a data tensor, the
tensors of multiple groups can be stacked and collectively decomposed in
order to compare and discriminate the motion in each group by analysing
the different loadings of each combination of modes for each group. The
proposed method was applied to study and compare left ventricular dy-
namics for a group of healthy adult subjects and a group of adults with
repaired Tetralogy of Fallot.

1 Introduction

Given the challenges in quantitatively measuring cardiac function, beyond simple
1D measures such as volume, strain, ejection fraction and so on, a number of
cardiac motion tracking methods have been proposed. Cardiac motion tracking
provides a non-invasive means to quantify cardiac motion, and can be used to
assess global and regional functional abnormalities such as akinesia or dyskinesia,
to classify subjects as healthy/diseased or according to the severity of motion
abnormalities, as well as to aid with diagnosis and therapy planning by providing
quantitative regional and global measures of function.

While single-subject motion tracking can provide useful insight into the mo-
tion dynamics for a given subject, population-based (i.e. atlas-based) motion



analysis can give further understanding on how the motion dynamics in a pa-
tient are typically affected by a pathology. The key challenge with analysing
population-wide motion dynamics is in finding a method to be able to compare
the motion from one subject to another in a consistent manner. Recent work
to address this has been focused on comparing either the regional strain values
directly, or the displacements computed from subject-specific motion tracking.
Comparing the strain values avoids the need to spatially or temporally align the
data, and can provide useful insight to aid with classification, such as in [1]. How-
ever, 1D strain measures are sufficient for identifying abnormal regions, but not
for fully characterising abnormalities. The displacement fields from a set of sub-
jects can provide further characterisation of motion abnormalities, though this
requires spatio-temporal alignment of either the images prior to motion tracking
(as in [2]), or the displacements themselves (as in [3],[4]). In either case, spatio-
temporal alignment of 3D data is not straightforward and subsequent analysis
of the motion from 3D displacements remains difficult to interpret and analyse.
In order to address these issues, a method was recently proposed to describe the
full motion of a group of subjects in a consistent and low-dimensional manner
as the tensor of Polyaffine parameters for a set of regions in the heart over the
cardiac cycle [5].

Given that a set of motion parameters is typically high dimensional (due
to the need to account for the spatial and temporal factors), model reduction
can be useful to reduce the dimensionality of the data while retaining a small
number of latent variables that describe the data. Tensor decomposition is one
such technique that has been widely studied in the last years for a wide range of
applications (see [6] for a review of tensor decomposition methods). PCA of dis-
placement field has already been proposed for population-based cardiac motion
analysis in [4], and singular value decomposition (SVD) of stacked Polyaffine
motion parameters was proposed in [7]. A difficulty with these methods is in in-
terpreting the results since both PCA and SVD are unconstrained and can thus
result in factor matrices with a large number of mode combinations required for
each subject.

Inspired by the method developed in [5], we propose a method for population-
wide cardiac motion analysis with intelligible and easy to interpret mode com-
binations. In contrast to this previous work, we study the motion of different
population subgroups using descriptive anatomical motion parameters (namely
the circumferential twisting, radial thickening, and longitudinal shrinking). Fur-
thermore, we identify much fewer, and thus more easily interpretable, factors
discriminating between the motion patterns of healthy and unhealthy subjects
thanks to a Tucker decomposition on Polyaffine motion parameters with a con-
straint on the sparsity of the core tensor (which essentially defines the loadings
of each mode combination). We believe that the sparsity of the discriminating
factors and their individual intelligibility is the key for a clear and intuitive
interpretation of differences between populations. The key contributions of the
present work are summarised in the following:



Re-orientation of the polyaffine matrices to a prolate spheroidal coordinate
system

Analysis of the rotation, stretch, shear, and translation components
Combined basis computation of multiple groups

4-way tensor decomposition, decoupling the spatial components

Tucker decomposition performed with sparsity constraints on the core tensor

A Dbrief overview of the methods proposed in [5] is given in the methods section
(Sec. 2) to introduce the Polyaffine motion parameter estimation and spatio-
temporal alignment of parameters. The key contributions of the present work
are then detailed in the subsequent sections. The results obtained from applying
the proposed method to distinguish between healthy subjects and patients with
Tetralogy of Fallot are described in the results section (Sec. 3).

2 Methods

A method for performing population-based cardiac motion analysis methods
by considering spatio-temporally aligned Polyaffine motion parameters and per-
forming decomposition of these for a group of subjects was recently proposed in
[5]. The method involves a cardiac motion tracking step that takes a dense dis-
placement field computed using the LogDemons algorithm [8] and projects this
to a Polyaffine space [9], subject to some cardiac-specific constraints (namely
incompressibility and regional smoothing). The obtained Polyaffine parameters
are then spatially and temporally aligned to a common reference frame, and the
parameters for all subjects are grouped to a data tensor of [space x time x
subject]. Non-constrained Tucker decomposition is applied to the data tensor to
extract the dominant spatial and temporal patterns.

In order to obtain more meaningful parameters and interpretations, we pro-
pose in this work to first re-orient the affine parameters from a Cartesian frame
to a prolate-spheroidal coordinate system, as described in Sec. 2.1. The rotation,
stretch, shear, and translation components can be extracted, as described in Sec.
2.2. We propose to construct a 4-way tensor to de-couple the spatial components
into the affine and regional parts, as described in Sec 2.3, from which Tucker de-
composition with a constraint on the sparsity of the core tensor is applied on the
4-way re-oriented data tensor of each transformation component, as described
in Sec. 2.4. Finally, the analysis can be performed by stacking together multiple
groups as a single tensor to compute a combined basis, as described in Sec 2.5.

2.1. Re-orientation of Affine Matrices to Local Coordinates: Analysing
the affine parameters directly when they are described in Cartesian coordinates
creates a difficulty in interpreting differences (or similarities) between groups.
In contrast, the parameters can be more easily interpreted once they are in a
prolate spheroidal system (which can be computed using the methods described
in [11]), given that the parameters will then directly represent motion along the
circumferential (c), radial (r), and longitudinal () directions. The Jacobian ma-
trices defined at the barycentre of each region in prolate spheroidal coordinates



(Ji(pss)) were computed in [5], in order to re-orient the affine parameters to a
common reference frame: M;pgs) = Ji(pss) * M;, where M; is the log-affine
matrix at region ¢ in Cartesian coordinates, and M;(pgg) is the transformation
of M; to prolate spheroidal coordinates.

2.2. Extraction of Rotation, Stretch, Shear, and Translation: Rather
than performing the tensor decomposition directly on the parameters, we can
perform tensor decomposition on re-scaled rotation, stretch, shearing and trans-
lation parameters. In this way, rather than performing the decomposition on the
affine matrices M:
a1, a2,1 a3;1 ty
My, = |a12a22 asp to
a1,3 az3 a3 3 t3
the analysis can be performed on vectors P, , ., made up of the rotation, stretch,

shearing and translation components for subject u at time v in region w. The
components are given by:

R, [1/2(az,3 — as2)] Se a1
Rotation : |R,| = [1/2(a13 —a31) Stretch : | S, | = |az,2
Ry 11/2(a1,2 — az,1) | |51 ] as3
Ser _1/2(041,2 + a271)_ _TC_ t1
Shear : | Sa | = |1/2(a1,3+ as3,1) Translation : |T,| = |[t2
Srt 11/2(a2,3 + as2) | |71 | ts

Combining the re-scaled affine parameters to a new [12 x 1] vector, we
obtain P,y = [Re Ry Ry Sc Sy S; Ser Sa Spi T T T;)". The elements
of P,y can then be scaled by the variance of each element described by:
o =|oR.,0R, - -0y,], where

1
o= T 2 el S

uU,V,W

Scaling by the variance ensures that all parameters are equally weighted in
the decomposition. Tensor analysis can then be performed on the final vectors

Tuow = [Pu,v,w][i]/g[i]'

2.3. 4-Way Tensor Decomposition: The goal of the proposed methodol-
ogy is to gain insight into pathology-specific functional behaviour by analysing
the motion. In order to analyse the spatial motion features independently (in
terms of regional and affine components), 4-way Tucker Decomposition can be
performed on tensors stacked by [motion parameters x region X time X sub-
ject]. Performing decomposition on the full tensor directly has the advantage of
describing how all the components interact (as opposed to matricising the ten-
sor and performing 2-way decomposition). Given the complex nature of cardiac



motion with several key components, trying to analyze these independently is
difficult.

The Tucker tensor decomposition method [12] is a higher-order extension of
PCA which computes orthonormal subspaces associated with each axis of the
tensor J. The Tucker decomposition of an 4-way tensor T is expressed as an
n-mode product:

T’RJS X1A1 XQAQ X3A3 ><4A4
My My Mz My
= § § E § gm1m2m3m4alm1 ® a2m2 ® a’37R3 ® a4m4
m1:1 m2:1 m3:1 m4:1

= [[S;Al;A27A37A4H7 (2)

where X, denotes the mode-n tensor-matrix product, and ® denotes the vector
outer product. A; are factor matrices in the *" direction (i = 1...4) that can
be thought of as the tensor equivalent of principal components for each axis.
The core tensor G gives the relationship between the modes in each direction
and describes how to re-combine the modes to obtain the original tensor 7.
We propose to perform 4-way Tucker decomposition with A;p: the extracted re-
oriented affine parameters, As: the regions, As: time, and A4: the subject axis.

2.4. Tucker Decomposition with Sparsity Constraints: In order to im-
prove the interpretability of the solution, a sparsity constraint on the core tensor
can be incorporated into the Tucker decomposition. Several methods have been
proposed for incorporating such a constraint. In [13], an alternating proximal
gradient method is used to solve the sparse non-negative Tucker decomposition
(NTD) problem:

mind || T— G x1 Ay x2 Az x3 Az x4 Ag |2 +2g | G 1 + 30 An || An |11

st §e RPN 4 e RV,

where J,, is the dimension of the core tensor for axis n and Ag, A, are pa-
rameters controlling the balance of the data fitting and sparsity level. The
core tensor G and factor matrices A, are alternately updated in the order:
§,A1,5, 45,9, A3, G, Ay (see [13] for details on the A\ parameters).

In this work, the tensor 7T represents the log-affine parameters and are typ-
ically not non-negative. In order to satisfy the non-negativity constraint of the
NTD algorithm, the exponential of each element of T can be analysed rather
than T directly.

2.5. Combined Basis Computation of Multiple Groups: In order to com-
pare the two populations with the same basis, a combined model can be gen-
erated by forming a 4-way tensor of all subjects grouped together, yielding an
observation tensor M of size [12 x 17 x 29 x N] for the affine, regional, temporal,
and the N patient-specific components respectively. 4-way tensor decomposition



can then be applied to this data tensor (as described in the previous sections).
By performing the decomposition jointly to obtain a combined basis for multiple
groups, the modes relevant to a given population can be extracted by studying
the loadings of each patient of a chosen mode to identify mutual and distinct
motion patterns.

3 Experiments and Results

The proposed methodology was applied to the STACOM 2011 cardiac motion
tracking challenge dataset [14]: an openly available data-set of 15 healthy sub-
jects (3 female, mean age + SD = 28 £+ 5), as well as a data-set of 10 Tetralogy
of Fallot patients (5 female, mean age + SD = 21 4 7). For all subjects, short
axis cine MRI sequences were acquired with 12 - 16 slices, isotropic in-plane
resolution ranging from 1.15 x 1.15mm? to 1.36 x 1.36mm?, slice thickness of
8mm, and 15 - 30 image frames.

The sparse NTD algorithm described in Sec. 2 was applied to the stacked
parameters for the combined tensor of healthy controls and the Tetralogy of
Fallot subjects with the size of the core tensor chosen as [5 x 5 x 5] (to retain
only the first 5 dominant modes in each axis). The choice of the number of
modes is a trade-off between maintaining a sufficient level of accuracy (in terms
of the percentage of variance explained), while minimizing the number of output
parameters. In this work, 5 modes were considered to be a reasonable trade-off.
The core tensor loadings for each subject were averaged for the different groups,
in order to visualise the dominant mode combinations in each group. These are
plotted in Fig. 1 and indicate that the two groups share some common dominant
loadings, though the Tetralogy of Fallot group have some additional dominant
loadings, which is expected since additional modes may be required to represent
the abnormal motion patterns in these patients.

The dominant modes unique to the control group (indicated by purple arrows
in Fig. 1) have the same regional component as the dominant mode in Fig. 2
and the same temporal component (mode 2: black line in Fig. 2 b), along with
affine mode 1,3 (see Fig. 2 for description of each matrix element):

0 0.053 0.002 0 0 0144 0.126 0
Affi=10.015 0.697 0.009 O Affs=10.099 0.101 0.076 0.083
0328 0 0 0.009 0 0.847 0 0.007

The affine modes suggest dominance in the radial stretch (thickening) and longi-
tudinal rotation (twisting) for mode 1, and dominance in the longitudinal stretch
for mode 3, which are the expected motion dynamics in healthy subjects. The
temporal mode (2) accounts for differences around peak systole and diastole
(given that the temporal resampling used in this work was linear).

The common dominant mode combinations are plotted in Fig. 2 (top row).
The affine mode for the dominant mode combinations (Fig. 2, a) shows predom-
inant stretching in the circumferential direction, which may be related to the
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Fig. 1. Average core tensor loadings for the healthy control group (a) and the
Tetralogy of Fallot group (b). The groups share some common dominant load-
ings (white arrows), however, the control group have some distinct mode com-
binations (purple arrows). The Tetralogy of Fallot group have some additional
extreme values (blue arrows), which indicates that additional modes are needed
to represent the abnormal motion patterns in these patients. Arrows indicate
the locations of the largest loadings for each group.

twisting motion in the left ventricle. The temporal modes (Fig. 2, b) show a
dominant pattern around the end- and mid-diastolic phases for mode 2, which
may be due to the end of relaxation and end of filling. The dominant regions for
these mode combinations are anterior (Fig. 2, c).

The dominant mode combinations for the Tetralogy of Fallot group are plot-
ted in Fig. 2. The affine mode for the first dominant combination (Fig. 2, d)
indicates little longitudinal motion. The corresponding temporal mode (Fig. 2,
e) represents a peak at the end systolic frame (around one third of the length
of the cardiac cycle). The corresponding regional mode (Fig. 2, f) indicates that
there is a dominance in the motion in the lateral wall. This is an area with
known motion abnormalities in these patients given that the motion in the free
wall of the left ventricle is dragged towards the septum. The temporal mode for
the second dominant mode (Fig. 2, h) has instead a peak around mid-systole,
with corresponding regional mode (Fig. 2, i), indicating dominance around the
apex, which may be due to poor resolution at the apex.

4 Conclusion

A method for descriptive and intuitive analysis of cardiac motion in different
populations is described. The proposed method makes use of a Polyaffine mo-
tion model that represents the motion with reasonable accuracy (i.e. on a par
with state-of-the-art methods) while requiring only few, consistently defined pa-
rameters for motion tracking of different subjects. The parameters are described
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Fig. 2. Dominant mode combinations common to both cohorts: affine mode 2
(a), temporal modes 2 and 4 (b), and regional mode 2 (c). Key - a: anterior, p:
posterior, s: septal, 1: lateral.

in terms of intuitive physiological parameters and the key affine descriptors of
the motion (namely the rotation, stretch, shear, and translation) are analysed
collectively for multiple populations in order to determine common and distinct
motion patterns between different groups. By performing sparse tensor decompo-
sition of the combined parameters, dominant loadings can be extracted in order
to make the analysis and comparison more straightforward, and we believe that
obtaining a very small number of expressive and intelligible parameters is cru-
cial for the future automatic discovery of key motion features in different cardiac
diseases. The proposed method shows promise for analysing pathology-specific
motion patterns in terms of the affine, temporal, and regional factors.
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