Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data

Abstract : We introduce time curves as a general approach for visualizing patterns of evolution in temporal data. Examples of such patterns include slow and regular progressions, large sudden changes, and reversals to previous states. These patterns can be of interest in a range of domains, such as collaborative document editing, dynamic network analysis, and video analysis. Time curves employ the metaphor of folding a timeline visualization into itself so as to bring similar time points close to each other. This metaphor can be applied to any dataset where a similarity metric between temporal snapshots can be defined, thus it is largely datatype-agnostic. We illustrate how time curves can visually reveal informative patterns in a range of different datasets.
Type de document :
Article dans une revue
IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2016, 22 (1), <10.1109/TVCG.2015.2467851>
Liste complète des métadonnées



https://hal.inria.fr/hal-01205821
Contributeur : Benjamin Bach <>
Soumis le : mardi 29 novembre 2016 - 16:03:35
Dernière modification le : samedi 18 février 2017 - 01:14:50
Document(s) archivé(s) le : lundi 27 mars 2017 - 07:00:30

Fichiers

main.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Benjamin Bach, Conglei Shi, Nicolas Heulot, Tara Madhyastha, Tom Grabowski, et al.. Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data. IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2016, 22 (1), <10.1109/TVCG.2015.2467851>. <hal-01205821>

Partager

Métriques

Consultations de
la notice

314

Téléchargements du document

1393