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Abstract: We provide two numerical schemes for the sample paths simulation of skew diffusions with piecewise
constant coefficients. Both of these schemes use the resolvent kernel. Precisely, the first scheme use only the resolvent
kernel while the second use it as less as possible. Moreover, in the second, some sampled positions are exact.
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Introduction

We consider the skew diffusions in dimension one, that is the continuous stochastic processes whose transition func-
tions are the solutions to{

∂
∂tp(t, x, y) = ρ(y)

2 div (a(x)∇p(t, x, y)) + b(x)∇p(t, x, y), ∀x ∈ R, 0 < t ≤ T,
p(0, x, y) = δy(x), y ∈ R

(1)

when (a, ρ, b) are piecewise constant. We decide to call them constant skew diffusions.
Recently [3, 6, 7] new algorithms were developed to sample the paths of these processes. But, none of them actually

give an answer for any combination of piecewise constant coefficients (a, ρ, b). Indeed, [6, 7] provide very interesting
exact schemes but only suited for a single discontinuity while [3] is designed to handle multiple discontinuities but
does not work for a discontinuous b.

In this note, we propose to give two new simulation schemes for one-dimensional constant skew diffusions with one
discontinuity at 0 which can be extended in case of multiple discontinuities as they are of the Euler type [15]. Besides,
both of our schemes can be mixed with a classical scheme as in [15] to ease the simulation of the skew diffusion when
it is far from the discontinuities.

The outline of this note is as follows. In §1, using the idea of [11, 12], we build a simulation scheme for Feller
processes that uses their resolvent density . Then, §2 we prove a Donsker invariance principle to argue for the con-
sistency of this scheme. In §3 we quickly show that a constant skew diffusion is a Feller process and possesses a
resolvent density. We also provide a change of variable allowing to simplify the coefficients (a, ρ, b) and to reduce the
problem. After that, we introduce always in §3 a closed-form of the resolvent density for the constant skew diffusions
with simplified coefficients that were computed in [14]. Finally in §4 and §5 we detail respectively the first and second
schemes for the reduced problem.

1. A numerical scheme for Feller processes using their resolvent density

Let X = (Xt)0≤t≤T be a one-dimensional Feller process starting at x, p(t, x, y) be the density of its transition kernel,
r(λ, x, y) be its resolvent density and τ be an exponentially distributed random variable with parameter λ which is
independent of X .

Proposition 1.1. The random variable Xτ possesses the density λ r(λ, x, y).
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Proof. The result follows directly from the computation that follows.

Px[Xτ ≤ u] =

∫ +∞

0

λ e−λt
∫ u

−∞
p(t, x, y) dy dt

=

∫ u

−∞
λ

∫ +∞

0

e−λtp(t, x, y) dt dy

=

∫ u

−∞
λ r(λ, x, y) dy.

Remark 1.1. Looking at this proof, we easily see that this result can be extended to higher dimensions.
From the definition of an exponential random variable, the larger λ is, the closest to its mean m = 1/λ its samples

are. Hence, using Proposition 1.1, we can consider for λ large enough that Algorithm 1 gives a discrete approximation
of a path until the time T of X .

Data: An initial position x at time 0.
Result: An approximated path of X in n steps until the time T .
Set X0 = x.
for i = 1, · · · , n do

Sample X biTc
n

using the density n r(n,X b(i−1)Tc
n

, y).

end
return (X0, X biTc

n

, · · · , XT ).

Algorithm 1: A scheme using the resolvent.

2. An invariance principle for the numerical scheme

We denote here by a n-steps random walk on [0, T ] a sequence of n random variables indexed by n elements of [0, T ]
and linearly interpolated on [0, T ]. In order to show that Algorithm 1 produces an approximation of X , we give an
invariance principle for the n-steps random walk produced by it.

Proposition 2.1. Let (Xn
t )0≤t≤T be for each n ≥ 0 the n-steps random walk defined by the random variables

generated by Algorithm 1. Then, (Xn
t )n≥0 converges in distribution to X .

Proof. For the sake of clarity, the proof is given assuming that T = 1.
For each n ≥ 0, we put τ0 = 0 and τk =

∑k
i=1 θi for k = 1, . . . , n with θ1, ..., θn a finite sequence of inde-

pendent exponential variables of parameter n. Using this sequence, we define for each n ≥ 0 the n-steps random
walk (Y nt )0≤t≤1 and (Znt )0≤t≤1 from the linear interpolation of respectively Yk/n = Xτk for each k = 1, . . . , n and
(Xτ0 , . . . , Xτn).

From their definition, (Y nt )0≤t≤1 and (Xn
t )0≤t≤T have the same law for each n ≥ 0. Thus, if (Y nt )0≤t≤1 converges

in distribution to X , then (Xn
t )0≤t≤T converges also to X .

By [2, Theorem 3.1], (Y nt )0≤t≤1 converges in distribution to X if we show

1. d(Y n, Zn) converges almost surely 0 which reduced here from the interpolation properties to prove sup0≤k≤n |τk−
k/n| converges a.s to 0.

2. (Zn)n≥0 converges in distribution to X .

By the construction above, (τk − k/n)0≤k≤n is a martingale. Therefore, using the Doob’s martingale inequality
and the fact that the sums of exponential random variables are Gamma distributed,

P

[
sup

0≤k≤n
(τk − k/n) ≥ K

]
≤ 1

Kp n
p
2

. (2)
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and we can choose p such that, for any K > 0,

+∞∑
n=1

P

[
sup

0≤k≤n
(τk − k/n) ≥ K

]
< +∞. (3)

Now from the properties of Gamma variables, it comes that P
[
sup0≤k≤n(τk − k/n) ≥ K

]
converges in distribu-

tion to 0. Thus, using (3) and the Borel-Cantelli lemma, sup0≤k≤n |τk − k/n| converges a.s to 0 and 1. is proved.
Since Zn is the linear interpolation of (X0, Xτ1 , · · · , Xτn),

|Znt − Xt| ≤ |Znt − Xτbntc | + |Xt − Xτbntc | ≤ |Xt − Xτbntc+1
| + |Xt − Xτbntc | + |Xt − Xτbntc |.

Hence,

P

[
sup

0≤t≤1
|Znt −Xt| ≥ K

]
≤ P

[
sup

0≤t≤1
|Xt −Xτbntc+1

| ≥ K
]

+ 2 P

[
sup

0≤t≤1
|Xt −Xτbntc | ≥ K

]
. (4)

and (Zn)n≥0 converges in probability to X if we show that both terms in the right hand side of (4) goes to 0 and 1.
The proof is similar for both terms of (4). Therefore, we only deals with the second one. As the paths of X are

continuous, for any K > 0 and any ε > 0, it exists δ > 0 such that

P

[
sup
|t−s|<δ

|Xt −Xt| ≥ K

]
≤ ε. (5)

Subsequently, since

P

[
sup

0≤t≤1
|Xt −Xτbntc | ≥ K

]
≤ P

[
sup
|t−s|<δ

|Xt −Xt| ≥ K

]
+ P

[
sup

0≤k≤n
(τk − k/n) ≥ δ

]
, (6)

(2) and (5) immediately provide that (6) goes to 0. As a result, 2. is proved.

3. Existence of the resolvent density, problem reduction and formulae

We have the following fundamental result on skew diffusions.

Proposition 3.1. Let the coefficients in (1) be such that

(a, ρ, b) are measurable from R3 → R with λ ≤ a, ρ ≤ Λ and |b| ≤ Λ.

Then, (1) possesses a unique solution

p(t, x, y) ∈ L2([0, T ],H1(R)) ∩ C([0, T ],L2(R)) (7)

which is the transition function of a conservative Feller process (Xt,Ft,Px)t≥0,x∈R with continuous paths. Besides,
X possesses the infinitesimal generator

A =
ρ(x)

2
div(a(x)∇·) + b(x)∇ · with Dom(A) =

{
f ∈ Cb(R,R) | Af ∈ Cb(R,R)

}
,

where
Cb(R,R) =

{
f : R 7→ R | f is continuous and bounded

}
and the resolvent of (A,Dom(A)) defined for any λ ∈ C such that Re[λ] > 0 admits a density with respect to Lebesgue
measure

r(λ, x, y) =

∫ +∞

0

p(t, x, y)e−λt dt, ∀(x, y) ∈ R2,

that is the Laplace transform of p(t, x, y).
3



Proof. First, the existence of the solution p(t, x, y) and its regularity is proved in [1]. Secondly, the existence of the
continuous stochastic process X is deducible through an adaptation of the results in [8, 9] as well as the infinitesimal
generator (see [14] for more details). At last, the result on the density of the resolvent associated to the infinitesimal
generator can be found in [10, 16].

Remark 3.1. The above result is classical when the coefficients belongs to C∞(R) and the conservative Feller process
obtained is a semi-martingale often called a diffusion process. This is in general not true when the coefficients are just
measurable.

With this result, it is evident that Algorithm 1 can be used to simulate skew diffusions assuming a closed-form of
the resolvent density is known.

Now let X be a constant skew diffusion having only one discontinuity at 0, that is with

a(x) = a+1(x ≥ 0) + a−1(x < 0), ρ(x) = ρ+1(x ≥ 0) + ρ−1(x < 0)

and b(x) = b+1(x ≥ 0) + b−1(x < 0), (8)

with (a+, a−, ρ+, ρ−) ∈ R∗+ × R∗+ × R∗+ × R∗+ and (b+, b−) ∈ R2.

In [5, 14], it is shown that X = φ−1(X ′) where φ(x) = x/
√
a(x) ρ(x) and X ′ is the constant skew diffusion whose

coefficients are

â(x) = β 1(x ≥ 0) + (1− β) 1(x < 0), ρ̂(x) = β−1 1(x ≥ 0) + (1− β)−1 1(x < 0)

with β =

√
a+/ρ+√

a+/ρ+ +
√
a−/ρ−

(9)

and b̂(x) =
b+√
a+ ρ+

1(x ≥ 0) +
b−√
a− ρ−

1(x < 0) = b̂+1(x ≥ 0) + b̂−1(x < 0).

The constant skew diffusions with coefficients of type (9) are well-known. They are the unique strong solution to
the stochastic differential equation involving local time

Yt = Y0 +Bt +

∫ t

0

b̂(Ys) ds+ (2β − 1)L0
t (Y ), X0 = x. (10)

where B = (Bt)t≥0 is a Brownian motion and Y = (Yt)t≥0 is the unknown process [13]. Besides, a closed-form of
their resolvent density was recently computed in [14].

Proposition 3.2 (A. Lejay et al., [14]). Let

g(γ, λ, x, y) =
1√

γ2 + 2λ

{
e(−γ+

√
γ2+2λ)(x−y) if x < y,

e(−γ−
√
γ2+2λ)(x−y) if x ≥ y.

(11)

The resolvent density of a skew diffusion X with coefficients satisfying (9) is

r(λ, x, y) = g(b̂+, λ, x, y)1(x ≥ 0) +A−+(λ, y)g(b̂−, λ, x, y)1(x < 0)

+A++(λ, y)g(b̂+, λ, x,−y)1(x ≥ 0). (12)

and for y < 0,

r(λ, x, y) = g(b̂−, λ, x, y)1(x < 0) +A−−(λ, y)g(b̂−, λ, x,−y)1(x < 0)

+A+−(λ, y)g(b̂+, λ, x, y)1(x ≥ 0) (13)
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with

A−+(λ, y) = Θ(λ, b̂+, b̂−)−12β

√
b̂2− + 2λ e

(b̂+−b̂−+
√
b̂2−+2λ−

√
b̂2++2λ)y

,

A++(λ, y) = Θ(λ, b̂+, b̂−)−1
(
β(

√
b̂2+ + 2λ− b̂+)− (1− β)(

√
b̂2− + 2λ− b̂−)

)
e2b̂+y,

A−−(λ, y) = Θ(λ, b̂+, b̂−)−1
(
− β (

√
b̂2+ + 2λ+ b̂+) + (1− β) (

√
b̂2− + 2λ+ b̂−)

)
e2b̂−y,

A+−(λ, y) = Θ(λ, b̂+, b̂−)−12(β − 1)

√
b̂2+ + 2λe

(b̂−−b̂++
√
b̂2−+2λ−

√
b̂++2λ)y

,

where the common denominator is

Θ(λ, b̂+, b̂−) = β
(√

b̂2+ + 2λ+ b̂+
)

+ (1− β)
(√

b̂2− + 2λ− b̂−
)
. (14)

With this last result and φ, we are finally able to simulate any constant skew diffusions with coefficients of type (8)
using Algorithm 1. Furthermore, any scheme that sample X with (a, ρ, b) given by (9) simulate Y with (â, ρ̂, b̂) given
by (8) after the application of φ−1.

4. The first scheme

We treat the case where X has coefficients given by (9) through a series of algorithms which once nested one within
the others give the scheme when the starting point of X is non negative. By the symmetry of (11), these algorithms
can be easily adapted when the starting point is negative providing thus a complete scheme.

We start with a few notations. E(α) denotes an exponential distribution with parameters α and B(p) a Bernoulli
distribution with parameters p. The notations Q(α, x) and T (α, x) stand for the distribution whose densities are
respectively

α e−α(y−x) 1(y ≥ x ≥ 0) and
α

1− eαx
eαy 1(0 ≤ y ≤ x)

From the expression in the Proposition 3.2,

P[XτX0 < 0|X0 ≥ 0] =



2λ (β−1)
(β−1)(−b̂−+

√
b̂2−+2λ)+β (−b̂+−

√
b̂2++2λ)

e
(−b̂+−

√
b̂2++2λ)x

×
∫

R e
−(−b̂−−

√
b̂2−+2λ)y

dy, if x ≥ 0,

−2λβ
(β−1)(−b̂−+

√
b̂2−+2λ)+β (−b̂+−

√
b̂2++2λ)

e
(−b̂−+

√
b̂2−+2λ)x

×
∫

R e
−(−b̂++

√
b̂2++2λ)y

dy, if x < 0.

Now using the densities of the exponential laws with parameters

α− = −b̂− −
√
b̂2− + 2λ and α+ = −b̂+ +

√
b̂2+ + 2λ,

the probabilities simplifies to

P[XτX0 < 0|X0 ≥ 0] =


2λ (β−1) (−b̂−−

√
b̂2−+2λ)−1

(β−1)(−b̂−+
√
b̂2−+2λ)+β (−b̂+−

√
b̂2++2λ)

e
(−b̂+−

√
b̂2++2λ)x

, if x ≥ 0,

−2λβ (−b̂++
√
b̂2++2λ)−1

(β−1)(−b̂−+
√
b̂2−+2λ)+β (−b̂+−

√
b̂2++2λ)

e
(−b̂−+

√
b̂2−+2λ)x

, if x < 0.

Hence,
P[Xτ ∈ dy|Xτ < 0, X0 ≥ 0]

P[XτX0 < 0|X0 ≥ 0]
= α+e

−α+y dy.

and the Algorithm 2 for sampling Xτ given X0 ≥ 0 follows and give the basis of the scheme.
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Data: An initial position X0 = x ≥ 0 at time 0.
Result: The position Xτ at time τ .
Sample U ∼ B(P[XτX0 < 0|X0 ≥ 0]).
if U = 1 then

Xτ = E+ ∼ E(α+).
else

Sample Xτ using (1− P[XτX0 < 0|X0 ≥ 0])−1λ r(λ, x, y) 1(y ≥ 0)1(x ≥ 0).
end
return Xτ .

Algorithm 2: Sampling Xτ .

Using the densities of Q(α+, X0),

(1− P[XτX0 < 0|X0 ≥ 0])
√
b̂2− + 2λ (−b̂+ +

√
b̂2− + 2λ)

λ e
−(b̂+−

√
b̂2++2λ)X0

P[Xτ ≥ X0|X0 ≥ 0]

=
(1− β)(−b̂− +

√
b̂2− + 2λ)− β (−b̂+ −

√
b̂2+ + 2λ)

(β − 1)(−b̂− +
√
b̂2− + 2λ) + β (−b̂+ −

√
b̂2+ + 2λ)

e
(−b̂+−

√
b̂2++2λ)X0

+ e
(−b̂++

√
b̂2++2λ)X0 .

Henceforth, with a classical splitting of (1 − P[XτX0 < 0|X0 ≥ 0])−1λ r(λ, x, y) 1(y ≥ 0) 1(x ≥ 0), Algorithm 3
for sampling of Xτ given Xτ ≥ 0 comes naturally and complete Algorithm 2.

Data: An initial position X0 = x ≥ 0 at time 0.
Result: The position Xτ at time τ given Xτ ≥ 0.
Sample U ∼ B(P[Xτ ≥ X0|X0 ≥ 0]).
if U = 1 then

Xτ = F ∼ Q(b̂+ −
√
b̂2+ + 2λ,X0).

else
Sample Xτ using (1− P[XτX0 < 0|X0 ≥ 0])−1(1− P[Xτ ≥ X0|X0 ≥ 0])1λ r(λ, x, y) 1(x > y ≥ 0)1(x ≥ 0).

end
return Xτ .

Algorithm 3: Sampling of Xτ given Xτ ≥ 0.

From (12), (1 − P )−1(1 −Q)1λ r(λ, x, y) 1(x > y ≥ 0) 1(x ≥ 0) is bounded density with its whole mass in the
(0, x). Thus, we can use a classical rejection sampling [4] to complete Algorithm 2 and obtain the scheme.
Remark 4.1. When

S = (1− β)(−b̂− +

√
b̂2− + 2λ)− β(−b̂+ +

√
b̂2+ + 2λ) > 0,

since √
b̂2+ + 2λP[Xτ ∈ dy|X0 ≥ 0, 0 ≤ Xτ < X0]

(1− P[XτX0 < 0|X0 ≥ 0])−1 (1− P[Xτ ≥ X0|X0 ≥ 0])−1

=
(1− β)(−b̂− +

√
b̂2− + 2λ)− β(−b̂+ +

√
b̂2+ + 2λ)

(β − 1)(−b̂− +
√
b̂2− + 2λ) + β (−b̂+ −

√
b̂2+ + 2λ)

e−b̂+(x−y) e
−
√
b̂2++2λ(x+y)

+ e
(−b̂+−

√
b̂2++2λ)(x−y)

,

a dichotomy immediately provides Algorithm 4 which gives an alternative to the rejection sampling.
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Data: The position X0 = x ≥ 0 at time 0.
Result: The position Xτ at time τ knowing that 0 ≤ Xτ < X0 and X0 ≥ 0.
Sample U ∼ B(P ).
if U = 1 then

Xτ = G1 with E+ ∼ T (−b̂+ −
√
b̂2+ + 2λ,X0).

else
Xτ = G2 with E+ ∼ T (−b̂+ +

√
b̂2+ + 2λ,X0).

end
return Xτ .

Algorithm 4: Sampling of Xτ given 0 ≤ Xτ < X0 and S > 0.

(a) Skew Brownian motion (b) Skew Brownian motion with constant drift

FIG 1. Histograms using the first algorithm and 100,000 final positions for a skew Brownian motion and a skew Brownian motion with constant
drift b = 2 with the parameter β = 0.7 and 0 as starting point for both of them.

The scheme we just present has shown relevant performances in a few numerical experiments. Basically, it competes
with the exact scheme for the Skew Brownian Motion given in [15] (see Figure 2 and Table 1) and gives a reliable
approximation of the Skew Brownian Motion with a constant drift (see Figure 1) which is the most complicated
constant skew diffusion with transition function that can be drawn.

5. The second scheme

We consider a scheme forX with (a, ρ, b) satisfying (9) which is exact when theX stays on the positive or the negative
half line and approximated when a crossing occurs. More precisely, we use an exact Euler scheme when the process
starts from a point that is not 0 and check if the process has cross 0. If 0 is crossed, we estimate the time s the process
takes to reach 0 and sample a position using the resolvent for the time length δt− s. This idea actually comes from the
two steps scheme developed in [15] for the skew Brownian motion.

We start by proving the consistency of this approach. Since the local time in 0 of a semi-martingale grows only when
the process cross x (see [17, Chapter VI, Proposition (1.3)]), (10) provides that X behaves exactly like a Brownian
motion with drift when it stays on one side of 0.

approximated exact
max 4.71137 4.80811
75 % quantile 0.927567 0.922331
median 0.374352 0.365781
25 % quantile -0.176939 -0.218652
min -4.59835 -4.27381

TABLE 1
Statistical quantities collected from simulations of the first algorithm and the Exact SBM’s algorithm of 100,000 final position of a skew Brownian

motion with β = 0.7 starting from 0.

.
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FIG 2. A Q-Q plot between the first algorithm and the SBM’s exact algorithm for a skew Brownian motion with β = 0.7 starting from 0.

.

As in §4, we gives a series of algorithms which must also be nested one within the others, cover only the case where
X starts from non negative position and can be easily adapt in the other case.

The general structure of the scheme is given in Algorithm (5) where Bb,x is Brownian Motion with drift and τx
is its first hitting time of 0. At first glance, it appears that we must sample a stopped and pinned Brownian motion
with drift. This is actually very easy to do since the exact scheme given in [15] for the case of a Brownian motion is
completely suited since a bridge of a Brownian motion with drift is a simple Brownian bridge. As evidence of this
statement, using a Doob’s h-transform, the density of a bridge of a Brownian motion with drift is given by

qT (t, x, y) =
pb(t, x, y)pb(T − t, y, z)

pb(T, x, z)

=

√
T√

2πt(T − t)
exp

{
(T (x− y) + t(z − x))2

2t(t− T )T

}
=
p0(t, x, y)p0(T − t, y, z)

p0(T, x, z)
,

where pb(t, x, y) is the transition function of Bb,x. For the sake of completeness, we recalled the scheme in Algorithm
7 where IG(ν, γ) denote the inverse gaussian distribution.

Now to complete the skeleton given in Algorithm 5, we set x = 0 in (11). It comes that

P[Xτ ≥ 0|X0 = 0] =
2λ (β − 1) (−b̂− −

√
b̂2− + 2λ)−1

(β − 1)(−b̂− +
√
b̂2− + 2λ) + β (−b̂+ −

√
b̂2+ + 2λ)

,

P[Xτ ∈ dy|Xτ ≥ 0, X0 = 0]

P[Xτ ≥ 0|X0 = 0]
= α+e

−α+y dy and
P[Xτ ∈ dy|Xτ < 0, X0 = 0]

P[Xτ < 0|X0 = 0]
= α−e

−α−y dy.

and Algorithm 6 follows.
As for the first scheme, we perform some numerical experiments given in Table 2 and Figures 3 and 4. Actually,

these experiments are exactly the same as those of §4.

Data: An initial position X0 = x > 0 and a time δt > 0.
Result: An approximated position Xδt at time δt.
Generate a realization (S, Y ) of (δt ∧ τx, Bb,xδt∧τx ).
if S = δt then

Xδt = Y .
else

Sample Xδt using the resolvent for an exponential time step of mean 1/(δt − s)
end
return Xδt.

Algorithm 5: The skeleton of the second scheme

8



Data: An initial position X0 = 0 and a time δt > 0.
Result: An approximated position Xδt at time δt.
Sample U ∼ B(P[Xτ ≥ 0|X0 = 0]).
if U = 1 then

Xτ = E+ ∼ E(α+).
else

Xτ = E+ ∼ E(α−).
end
return XT .

Algorithm 6: Sampling from 0.

Data: An initial position x and a time δt > 0.
Result: A couple (τx, 0) or (δt, Bb,xδt ).
Sample a realization y of a Bb,x with a Euler scheme.
if xy < 0 then

Generate ξ ∼ IG( |x||y| ,
x2

δt
).

Set τx = δt ξ
1+ξ

.
return (τ, 0)

else
Generate U ∼ U([0, 1]).
if U < e−

2xy
δt then

Generate ξ ∼ IG( |x||y| ,
x2

δt
).

Set τx = δt ξ
1+ξ

.
return (τ, 0)

else
return (δt, y).

end
end

Algorithm 7: Simulation of (δt ∧ τx, Bb,xδt∧τx).

(a) Skew Brownian motion (b) Skew Brownian motion with constant drift

FIG 3. The histograms using the second algorithm and 100,000 final positions for a skew Brownian motion and a skew Brownian motion with
constant drift b = 2 with the parameter β = 0.7 and 0 as starting point for both of them.

approximated 1 approximated 2 exact
max 4.71137 4.07464 4.80811
75 % quantile 0.927567 0.923473 0.922331
median 0.374352 0.364082 0.365781
25 % quantile -0.176939 -0.217547 -0.218652
min -4.59835 -4.24103 -4.27381

TABLE 2
Statistical quantities collected from simulations of the first algorithm and the Exact SBM’s algorithm of 100,000 final position of a skew Brownian

motion with β = 0.7 starting from 0.

.
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FIG 4. A Q-Q plot between the second algorithm and the SBM’s exact algorithm for a skew Brownian motion with β = 0.7 starting from 0.

.

Conclusion

While both schemes clearly answer to the problem of simulating constant skew diffusions, they are not exact scheme
and we think that it is possible to provide schemes which use the resolvent and are exact. In addition, it can be
interesting to compare which schemes is the best particularly when they are extended to handle a large number of
discontinuities. This is certainly a good topic for a future work.
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