Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, Label-Embedding for Attribute-Based Classification, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013.
DOI : 10.1109/CVPR.2013.111

URL : https://hal.archives-ouvertes.fr/hal-00815747

Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele, Evaluation of output embeddings for fine-grained image classification, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.7, 2015.
DOI : 10.1109/CVPR.2015.7298911

Y. Amit, M. Fink, N. Srebro, and S. Ullman, Uncovering shared structures in multiclass classification, Proceedings of the 24th international conference on Machine learning, ICML '07, 2007.
DOI : 10.1145/1273496.1273499

S. Bengio, J. Weston, and D. Grangier, Label embedding trees for large multi-class tasks, NIPS, 2010.

T. Berg, A. Berg, and J. Shih, Automatic Attribute Discovery and Characterization from Noisy Web Data, ECCV, 2010.
DOI : 10.1007/978-3-642-15549-9_48

S. Branson, C. Wah, B. Babenko, F. Schroff, P. Welinder et al., Visual Recognition with Humans in the Loop, ECCV, 2010.
DOI : 10.1007/978-3-642-15561-1_32

K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, The devil is in the details: an evaluation of recent feature encoding methods, Procedings of the British Machine Vision Conference 2011, p.7, 2011.
DOI : 10.5244/C.25.76

H. Chen, A. Gallagher, and B. Girod, Describing Clothing by Semantic Attributes, ECCV, 2012.
DOI : 10.1007/978-3-642-33712-3_44

H. Chen, A. Gallagher, and B. Girod, What's in a Name? First Names as Facial Attributes, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013.
DOI : 10.1109/CVPR.2013.432

S. Clinchant, G. Csurka, F. Perronnin, and J. Renders, XRCE participation to ImageEval, ImageEval Workshop, CVIR, 2007.

S. Deerwester, Improving information retrieval with latent semantic indexing, ASIS, 1988.

R. A. Devore, Deterministic constructions of compressed sensing matrices, Journal of Complexity, vol.23, issue.4-6, pp.4-6, 2007.
DOI : 10.1016/j.jco.2007.04.002

T. G. Dietterich and G. Bakiri, Solving multiclass learning problems via error-correcting output codes, JAIR, vol.2, issue.2, pp.263-286, 1995.

M. Douze, A. Ramisa, and C. Schmid, Combining attributes and Fisher vectors for efficient image retrieval, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995595

URL : https://hal.archives-ouvertes.fr/inria-00566293

K. Duan, D. Parikh, D. J. Crandall, and K. Grauman, Discovering localized attributes for fine-grained recognition, CVPR, 2012.

S. Escalera, O. Pujol, and P. Radeva, Error-correcting ouput codes library, 2010.

A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, Describing objects by their attributes, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206772

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Ferrari and A. Zisserman, Learning visual attributes, NIPS, 2007.

A. Frome, G. Corrado, J. Shlens, S. Bengio, J. Dean et al., DeViSE: A deep visual-semantic embedding model, NIPS, 2007.

B. Geng, L. Yang, C. Xu, and X. Hua, Ranking model adaptation for domain-specific search, IEEE TKDE, issue.6

R. Hamming, Error Detecting and Error Correcting Codes, Bell System Technical Journal, vol.29, issue.2, 1950.
DOI : 10.1002/j.1538-7305.1950.tb00463.x

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, p.4, 2008.

T. Hofmann, Probabilistic latent semantic indexing, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '99, 1999.
DOI : 10.1145/312624.312649

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Hsu, S. Kakade, J. Langford, and T. Zhang, Multi-label prediction via compressed sensing, NIPS, 2009.

H. Jégou, M. Douze, and C. Schmid, Product Quantization for Nearest Neighbor Search, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.1, 2011.
DOI : 10.1109/TPAMI.2010.57

G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi et al., Baby talk: Understanding and generating simple image descriptions, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995466

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Kumar, P. Belhummeur, and S. Nayar, FaceTracer: A Search Engine for Large Collections of Images with Faces, ECCV, 2008.
DOI : 10.1007/978-3-540-88693-8_25

N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, Attribute and simile classifiers for face verification, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459250

C. Lampert, H. Nickisch, and S. Harmeling, Learning to detect unseen object classes by between-class attribute transfer, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206594

H. Larochelle, D. Erhan, and Y. Bengio, Zero-data learning of new tasks, AAAI, 2008.

J. Liu, B. Kuipers, and S. Savarese, Recognizing human actions by attributes, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995353

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

D. Mahajan, S. Sellamanickam, and V. Nair, A joint learning framework for attribute models and object descriptions, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126373

S. Maji and A. Berg, Max-margin additive classifiers for detection, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459203

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Marchesotti and F. Perronnin, Learning beautiful (and ugly) attributes, BMVC, 2013.
DOI : 10.5244/c.27.7

T. Mensink, E. Gavves, and C. Snoek, COSTA: Co-Occurrence Statistics for Zero-Shot Classification, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.313

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Mensink, J. Verbeek, and G. Csurka, Tree-Structured CRF Models for Interactive Image Labeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.2
DOI : 10.1109/TPAMI.2012.100

URL : https://hal.archives-ouvertes.fr/hal-00688143

T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost, ECCV, 2012.
DOI : 10.1007/978-3-642-33709-3_35

URL : https://hal.archives-ouvertes.fr/hal-00722313

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, NIPS, 2013

V. Ordonez, G. Kulkarni, and T. Berg, Im2Text: Describing images using 1 million captioned photographs, NIPS, 2011.

D. Osherson, J. Stern, O. Wilkie, M. Stob, and E. Smith, Default Probability, Cognitive Science, vol.84, issue.2, 1991.
DOI : 10.1207/s15516709cog1502_3

M. Palatucci, D. Pomerleau, G. Hinton, and T. Mitchell, Zero-shot learning with semantic output codes, NIPS, 2003.

F. Perronnin, Z. Akata, Z. Harchaoui, and C. Schmid, Towards good practice in large-scale learning for image classification, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6248090

URL : https://hal.archives-ouvertes.fr/hal-00690014

F. Perronnin, J. Sánchez, and T. Mensink, Improving the Fisher Kernel for Large-Scale Image Classification, ECCV, 2010.
DOI : 10.1007/978-3-642-15561-1_11

URL : https://hal.archives-ouvertes.fr/inria-00548630

M. Rohrbach, M. Stark, and B. Schiele, Evaluating knowledge transfer and zero-shot learning in a large-scale setting, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995627

M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele, What helps here ? and why? Semantic relatedness for knowledge transfer, CVPR, 2010.
DOI : 10.1109/cvpr.2010.5540121

M. Saerens, F. Fouss, L. Yen, and P. Dupont, The Principal Components Analysis of a Graph, and Its Relationships to Spectral Clustering, ECML, 2004.
DOI : 10.1007/978-3-540-30115-8_35

J. Sánchez and F. Perronnin, High-dimensional signature compression for large-scale image classification, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995504

J. Sánchez, F. Perronnin, T. , and J. Verbeek, Image Classification with the Fisher Vector: Theory and Practice, International Journal of Computer Vision, vol.73, issue.2, 2013.
DOI : 10.1007/s11263-013-0636-x

W. J. Scheirer, N. Kumar, P. N. Belhumeur, and T. E. Boult, Multiattribute spaces: Calibration for attribute fusion and similarity search, CVPR, 2012.

S. Shalev-shwartz and S. Ben-david, Understanding Machine Learning: From Theory to Algorithms, 2014.
DOI : 10.1017/CBO9781107298019

S. Shalev-shwartz, Y. Singer, N. Srebro, and A. Cotter, Pegasos, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.3-30, 2011.
DOI : 10.1145/1273496.1273598

V. Sharmanska, N. Quadrianto, and C. H. Lampert, Augmented Attribute Representations, ECCV, 2012, p.3
DOI : 10.1007/978-3-642-33715-4_18

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Shawe-taylor and N. Cristianini, Kernel Methods for Pattern Analysis, 2004.
DOI : 10.1017/CBO9780511809682

B. Siddiquie, R. Feris, and L. Davis, Image ranking and retrieval based on multi-attribute queries, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995329

R. Socher, M. Ganjoo, H. Sridhar, O. Bastani, C. Manning et al., Zero-shot learning through cross-modal transfer, p.5, 2013.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, Large margin methods for structured and interdependent output variables, JMLR, vol.8, issue.9, 2005.

N. Usunier, D. Buffoni, and P. Gallinari, Ranking with ordered weighted pairwise classification, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, 2009.
DOI : 10.1145/1553374.1553509

URL : https://hal.archives-ouvertes.fr/hal-01297974

A. Vedaldi and A. Zisserman, Efficient additive kernels via explicit feature maps, CVPR, 2010.
DOI : 10.1109/cvpr.2010.5539949

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Vedaldi and A. Zisserman, Sparse kernel approximations for efficient classification and detection, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6247943

C. Wah and S. Belongie, Attribute-Based Detection of Unfamiliar Classes with Humans in the Loop, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013.
DOI : 10.1109/CVPR.2013.106

C. Wah, S. Branson, P. Perona, and S. Belongie, Multiclass recognition and part localization with humans in the loop, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126539

G. Wang and D. Forsyth, Joint learning of visual attributes, object classes and visual saliency, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459194

Y. Wang and G. Mori, A Discriminative Latent Model of Object Classes and Attributes, ECCV, 2010.
DOI : 10.1007/978-3-642-15555-0_12

K. Weinberger and O. Chapelle, Large margin taxonomy embedding for document categorization, NIPS, 2008.

J. Weston, S. Bengio, and N. Usunier, Large scale image annotation: learning??to??rank with??joint word-image embeddings, Machine Learning, vol.5, issue.1, 2006.
DOI : 10.1007/s10994-010-5198-3

J. Weston, O. Chapelle, A. Elisseeff, B. Schölkopf, and V. Vapnik, Kernel dependency estimation, NIPS, p.4, 2002.

B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. J. Guibas et al., Human action recognition by learning bases of action attributes and parts, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126386

F. Yu, L. Cao, R. Feris, J. Smith, and S. Chang, Designing Category-Level Attributes for Discriminative Visual Recognition, 2013 IEEE Conference on Computer Vision and Pattern Recognition, p.10, 2013.
DOI : 10.1109/CVPR.2013.105

X. Yu and Y. Aloimonos, Attribute-Based Transfer Learning for Object Categorization with Zero/One Training Example, ECCV, p.3, 2010.
DOI : 10.1007/978-3-642-15555-0_10