
Enabling Big Data Analytics in the Hybrid Cloud
using Iterative MapReduce

Francisco J. Clemente-Castelló∗, Bogdan Nicolae†, Kostas Katrinis†, M. Mustafa Rafique†,
Rafael Mayo∗, Juan Carlos Fernández∗, Daniela Loreti‡

∗Depto. de Ingenierı́a y Ciencia de Computadores, Universidad Jaume I 12.071–Castellón, Spain.

Email: {fclement, mayo, jfernand}@uji.es

†IBM Research - Damastown, Mulhaddart, Dublin, Ireland.

Email: {bogdan.nicolae, katrinisk, mustafa.rafique}@ie.ibm.com

‡Department of Computer Science and Engineering University of Bologna, Bologna, Italy

Email: daniela.loreti@unibo.it

Abstract—The cloud computing model has seen tremendous
commercial success through its materialization via two promi-
nent models to date, namely public and private cloud. Re-
cently, a third model combining the former two service models
as on-/off-premise resources has been receiving significant
market traction: hybrid cloud. While state of art techniques
that address workload performance prediction and efficient
workload execution over hybrid cloud setups exist, how to
address data-intensive workloads - including Big Data Analyt-
ics - in similar environments is nascent. This paper addresses
this gap by taking on the challenge of bursting over hybrid
clouds for the benefit of accelerating iterative MapReduce
applications. We first specify the challenges associated with
data locality and data movement in such setups. Subsequently,
we propose a novel technique to address the locality issue,
without requiring changes to the MapReduce framework
or the underlying storage layer. In addition, we contribute
with a performance prediction methodology that combines
modeling with micro-benchmarks to estimate completion time
for iterative MapReduce applications, which enables users to
estimate cost-to-solution before committing extra resources
from public clouds. We show through experimentation in a
dual-Openstack hybrid cloud setup that our solutions manage
to bring substantial improvement at predictable cost-control
for two real-life iterative MapReduce applications: large-scale
machine learning and text analysis.

Index Terms—Hybrid Cloud; Big Data Analytics; Iterative
Applications; MapReduce; Data locality; Performance Predic-
tion

I. INTRODUCTION

The “public cloud” service model has transformed IT

over the years thanks to pay-as-you-go [1] (e.g. Amazon

EC2) and the ability to quickly serve a large number

of tenants from a common pool of virtualized and/or

bare-metal, physically co-located (i.e. single datacenter)

IT resources. Various technical (e.g. performance isolation,

custom technology needs) and business (e.g. security, out-

sourcing of compliance burden) requirements have sparked

an alternative cloud delivery model, termed “private cloud”

[2] (e.g. IBM Softlayer Private Cloud). Despite its many

commonalities with public cloud in terms of underlying

technology and software stacks, the primary differentiator

of the private model lies in the delivery of cloud services

over a physical infrastructure that is exclusively dedicated

to the tenant. Furthermore, this is usually coupled with

additional foundational infrastructure services managed by

the provider, such as provisioning, security, compliance and

connectors.

Recently, a new cloud service model has been emerging,

namely hybrid cloud. As the term implies, the hybrid model

encompasses a combination of two or more instances of the

previously outlined models, typically in the form of pri-

vate/public: a set of VMs (virtual machines) hosted on the

private cloud (on-premise) are temporarily complemented

with VMs hosted on a public cloud (off-premise). The

business reasons driving such an evolution are multi-fold,

some of which are: cloud-bursting [3] from private to public

clouds to overcome service hotspots without extending

the private cloud with additional physical infrastructure,

disaster recovery [4] (i.e. move/replicate to a public cloud

to survive extensive private cloud failures), combining on-

premise sensitive data processing with open data hosted

on public clouds, etc. Market studies [5] forecast a hy-

brid cloud market size worth of $80 Billions by 2018,

anticipated due to an aggressive average cumulative annual

growth rate of 30% until 2018.

Hybrid cloud services have already started to be commer-

cially available, e.g. VMWare vAir (infrastructure service)

and Rackspace hybrid cloud hosting (platform service).

Among the various widely used and trending platform

and/or application software services that leverage the hybrid

cloud delivery model [6], [7], data-intensive analytics at

large scale is one of the most challenging cases, especially

when large volumes of data are involved (often called “Big

Data Analytics”). Conventional big data analytics frame-

works assume physical co-location of IT resources with

high-speed interconnection among servers. This assumption



is lifted in hybrid cloud environments comprising phys-

ically separated datacenters that are interconnected via a

network that is at least an order of magnitude slower (either

dedicated connectivity or the open Internet). Furthermore,

due to the sheer size of the data being analyzed, most big

data analytics techniques make heavy use of data locality

by shipping the computation close to the data. This aspect

is particularly challenging when boosting a private cloud

with extra temporary VMs from a public IaaS cloud to

finish a big data analytics job faster: the newly provisioned

VMs do not hold any data and as such it is necessary to

send large amounts of data over the slow link in order to be

able to leverage the extra computational capability. As such,

data movement is elevated to a major challenge in “hybrid

cloud big data analytics”, which has various runtime and

data management implications at the level of the storage

layer.

This paper tackles the major challenge outlined above

using MapReduce [8] as a reference analytics framework

embodiment due to its significant deployment base and

traction. We focus on one specific class of big data analytics

applications that is particularly suitable for “hybrid cloud

big data analytics”: iterative applications that reuse invari-

ant input data. For this class of applications, data locality

can be leveraged over and over again once the input data

was replicated off-premise. However, given the large initial

overhead of the data movement, an efficient solution that

facilitates data locality is non-trivial. Furthermore, since the

extra off-premise resources incur pay-as-you-go costs, it

is crucial to estimate the performance gains in advance,

in order to be able to decide whether it is worthwhile to

commit any extra resources at all, and, if so, how many

of them in order to achieve the desired cost-performance

trade-off. This paper aims to address both directions. We

summarize our contributions as follows:

• We propose a novel technique that minimizes data

movement over the inter-cloud network and thus guar-

antees elevated levels of data locality, while preserving

cross-cloud data replication. We achieve this in a com-

pletely transparent fashion, without invasive changes

to the MapReduce framework or the underlying stor-

age layer by adapting existing features to the hybrid

setup (Section IV).

• We propose a performance prediction methodol-

ogy that combines analytical modeling with micro-

benchmarking to estimate time-to-solution in a hybrid

setup, including any data movement and computation

(Section V).

• We evaluate our approach in a series of experi-

ments that involve two representative real-life iterative

MapReduce applications exhibiting a highly intensive

map phase that processes large input datasets. Our

experiments demonstrate both the ability to achieve

strong scalability using our data movement technique,

as well as small prediction errors (Section VI).

II. RELATED WORK

Recent years have seen extensive enhancements in the

Hadoop framework. Several efforts to improve the MapRe-

duce performance leverage cloud technologies [9]–[12],

with the assumption of having unlimited computing re-

sources. These efforts are complemented by works on

storage elasticity [13], [14], which explore how to deal with

the explosion of the costs related to the storage capacity and

the I/O bandwidth, and are highly relevant for iterative HPC

and MapReduce applications.

A few recent efforts are focused on improving the perfor-

mance of MapReduce frameworks for hybrid environments.

HybridMR [15] proposes a solution for executing MapRe-

duce in hybrid desktop grids and external voluntary nodes,

but does not consider expanding and shrinking a MapRe-

duce setup dynamically. HadoopDB [16] proposes a hybrid

system comprising Hadoop and parallel database systems

to yield the resilience, and scalability of Hadoop and the

performance and efficiency of parallel databases. Simi-

larly, hybrid scheduling techniques [17]–[19] uses GPUs

to improve the performance of MapReduce applications in

accelerator-enabled clusters. These techniques uses hybrid

computing to improve the performance of MapReduce

applications, but the hybrid aspect is on the computational

side rather than the networking side.

Specifically to workload performance prediction and

optimization in hybrid clouds, Bossche et al. [20] have

proposed a linear/integer programming model for relevant

workloads, showing substantial improvement over naive

executions. Albeit valuable from a bounds perspective, such

models are typically hard to scale and also fail to capture

framework-specific intricacies, such as data-movement and

data locality. Imai et al. [21] explore hybrid cloud prediction

patterns from the perspective of selection of resource units

(virtual machine sizing types), with prediction techniques

that could couple the present work in terms selecting match-

ing VM sizes for hosting MapReduce daemons. The hybrid

cloud extensions to MapReduce for the Aneka Cloud [22]

constitutes another closely related work to this paper. It

relies on the assumption that the distributed filesystem is

persistently deployed and loaded with data throughout the

execution of MapReduce workloads. As such, it does not

capture the initial phase of cross-cloud data distribution and

data-balancing, a vital phase in high value hybrid cloud use-

cases, such as cloud-bursting.

A solution is proposed [23] for running data analysis ap-

plications when data is distributed across local and remote

cloud systems. This work assumes an adapted MapReduce

API that uses a local and global reduction for running Map

and Reduce tasks to avoid the overheads of data transfers

across local and remote clouds. In this work, a MapReduce

job is executed either the local cluster or the cloud cluster

using a head component, whereas, our approach executes

a job on local as well as on the remove cloud concurrently

using the resources available.



A hybrid cloud computing [24] model with an intel-

ligent workload factoring service for proactive workload

management proposes a fast frequent data item detection

algorithm. The proposed hybrid architecture consists of

a base workload that is executed on the local cloud and

a flash crowd workload that is executed on the remote

cloud. Instead, our approach focuses on single MapReduce

workload where the processes exhibit tighter coupling and

data dependencies.

III. CHALLENGES OF DATA LOCALITY IN HYBRID IAAS

CLOUDS

MapReduce applications typically exhibit a high degree

of data parallelism: massive amounts of data are trans-

formed in an embarrassingly parallel fashion in a map

phase, after which they are aggregated in a reduce phase.

This approach puts a high burden on the storage layer: it

needs to serve a large number of concurrent read requests

corresponding to the input data of the map phase, as well as

a large number of concurrent write requests corresponding

to the output of the reduce phase.

In this context, using a conventional distributed file sys-

tem that is decoupled from the MapReduce runtime is not

enough to deal with such highly concurrent I/O access pat-

terns: this would incur a massive amount of network traffic,

overwhelming the networking infrastructure and offsetting

the benefits of storing the data in a distributed fashion. For

this reason, a key design choice of MapReduce is the ability

to take advantage of data locality: the storage layer is co-

located with the MapReduce runtime on the same nodes

and is specifically designed to expose the location of the

data blocks, effectively enabling the scheduler to bring the

computation close to the data and avoid a majority of the

storage-related network traffic. By replacing the nodes with

virtual machines, a similar configuration that can efficiently

exploit data locality can be obtained in an IaaS cloud as

well.

However, in a hybrid cloud setup, there are two major

challenges. First, the storage layer and all data is de-

ployed initially only on-premise. Thus, when additional

off-premise VMs are provisioned from the external cloud

provider to boost the initial setup, they cannot benefit

out-of-the-box from data locality and need to fetch/write

their data to/from the on-premise VMs. Second, the link

between the on-premise infrastructure and the external

cloud provider is typically of limited capacity. Thus, off-

premise VMs that need to communicate with on-premise

VMs create a network bottleneck much faster than the case

when all VMs are located within the same cloud.

These two challenges are even more exacerbated in the

context of iterative applications: in many cases, a majority

of the input data needed for the first iteration will be needed

for the subsequent iterations (such data is called the invari-

ant). Thus, adopting a naive solution where the off-premise

VMs read the input data from the on-premise VMs over and

over again over a weak link is not feasible. Furthermore, for

the data that changes from iteration to iteration, off-premise

VMs need to constantly write their output remotely, then

read it back in the subsequent iteration, again over the weak

link. Given these circumstances, exploring a better solution

that improves the ability to take advantage of data locality

in a hybrid setup is critical.

IV. ASYNCHRONOUS DATA REBALANCING TECHNIQUE

This section describes our proposal to enable efficient

execution of iterative MapReduce jobs in a hybrid IaaS

cloud setup. It focuses on defining a strategy to address the

technical challenges mentioned in the previous section.

At first sight, the problem of avoiding remote data

transfers over the weak link seems to be easily addressable

by using a conventional caching solution: the invariant data

and the newly written data can simply be stored locally on

the off-premise VMs for faster subsequent access. However,

adopting such a caching strategy is non-trivial, because it

needs to integrate well into the whole MapReduce frame-

work.

More specifically, since the scheduling of tasks is deeply

linked with the data locality, the MapReduce scheduler will

prefer on-premise VMs over off-premise VMs, which leads

to a scenario where the off-premise VMs are underutilized.

Furthermore, even if the scheduler would not exhibit such

preference and would rather aim for load balancing, it is

not enough to simply cache the data blocks off-premise

and expose their location, because the storage layers fills

other roles as well: replication support for resilience and

high availability, load balancing of the data distribution,

etc. Thus, in order to scale and properly take advantage

of all these features, it is important to extend the storage

layer beyond the on-premise VMs and re-balance the data

blocks so that they are spread both over the on-premise

VMs as well as the off-premise VMs. Also important

are other non-functional aspects: users prefer to use a

standard MapReduce distribution (e.g. Hadoop) that was

tested and tuned in their on-premise cloud, rather than

switch to a dedicated solution specifically written for a

hybrid setup. Furthermore, switching to a custom storage

layer may not always be feasible: for example, if a huge

amount of data is already stored in a regular on-premise

MapReduce deployment, the overhead of migrating to a

custom storage layer might offset the benefits of enabling

the hybrid support altogether.

For these reasons, we propose a non-invasive solution

that solves the aforementioned issues without deviating

from the standard storage layer. Our key idea is to

leverage rack awareness, a feature typically implemented

in production-ready MapReduce storage layers, such as

HDFS [25]. Originally intended as a mechanism to enhance

fault tolerance, rack awareness enables the user to specify

for each HDFS node that is part of the deployment a logical

group, typically corresponding to a physical rack of the

cluster where Hadoop is deployed. Using this information,

HDFS replicates each data block at least once outside of



the group where it was written, under the assumption that

such a behavior improves the ability to resist catastrophic

failures where a whole rack would fail at once.

In our context, we leverage rack awareness from a novel

perspective. Specifically, we create two logical groups: one

for the on-premise VMs and another for the off-premise

VMs. Thus, when new off-premise VMs are provisioned

to boost the capability of the already running on-premise

VMs, we extend the HDFS deployment in a rack-aware

fashion on the off-premise VMs. Using this approach,

whenever an off-premise VM writes a new data block, it

actually writes both local copies (solving the locality issue)

as well as at least a remote copy, which enables efficient

storage elasticity: off-premise VMs can be simply killed as

desired without having to worry about transferring the data

back to the on-premise side. The only remaining issue is

that the HDFS data nodes running on the off-premise VMs

are initially empty, which prompts the need to re-balance

the initial data blocks in order achieve load balancing and

enable the scheduler to fully take advantage of the off-

premise VMs. However, re-balancing has its own overhead

and as such is subject to a trade-off: at one extreme

one can wait until all invariant data is balanced, which

enables a maximum acceleration of the iterations from the

beginning; at the other extreme one can run the re-balancing

asynchronously, which eliminates the initial overhead at the

cost of gradual acceleration of the iterations as the data

balancing progresses. We opted for the second option, since

the initial overhead of re-balancing is significant and the

ability to overlap the computation with the data transfers is

crucial. While more elaborate balancing strategies (e.g. wait

until a certain number of blocks was transferred off-premise

then switch to the asynchronous strategy) are possible to

explore, this is outside the scope of this work.

V. PERFORMANCE PREDICTION MODEL

In some cases, using a hybrid cloud is a functional

requirement: there are simply not enough resources on-

premise to run the application with the desired level of

complexity. However, most of the time, users are interested

in a hybrid solution because they intend to accelerate their

application by renting extra off-premise VMs. Since a

hybrid solution incurs additional costs, it is important to

understand how much the hybrid solution can accelerate

the application, given a number of extra off-premise VMs.

Ideally users would like to have the answer in advance, in

order be able to decide apriori whether it is worthwhile to

commit the extra off-premise VMs or not. In this section,

we propose a performance prediction methodology that

addresses this issue.

A. Assumptions

We assume a MapReduce deployment that initially spans

N on-premise VMs where all initial invariant data is

distributed. These N on-premise VMs are complemented

by M extra off-premise VMs, where we extend the MapRe-

duce deployment using the asynchronous rack-aware re-

balancing strategy mentioned in the previous section and

then run the iterative application on the resulting hybrid

setup. For simplicity, we assume the on-premise VMs are

identical in capabilities to the off-premise VMs. Further-

more, we assume that the user has access to the histor-

ical traces of the application or can estimate important

MapReduce metrics: total number of map/reduce tasks

(pM and pR); total number of map/reduce slots (kM and

kR); average map/reduce/shuffle duration (AM , AR, AS),

average data/shuffle sizes per map/reduce/shuffle task (DM ,

DR, DS). Also, we assume that the iterative applications

exhibit a well-defined behavior: the number of iterations

(I) is known in advance and the map/reduce tasks do

not change in terms of number, amount of input data and

computational complexity from one iteration to another.

B. Performance model for on-premise jobs

Using these metrics, techniques to estimate the runtime

of MapReduce jobs on a single cluster have been proposed

before and can be used in our case for the N on-premise

VMs. In particular, Verma et. al. propose a model based

on the make-span theorem [26], which states that for a

greedy assignment of p tasks on k workers, the lower

and upper bound for the execution time is p · A/k and,

respectively, (p−1)·A/k+λ, with A the average execution

time of the tasks and λ the execution time of the slowest

task. Intuitively, the lower bound corresponds to an ideal

scenario where there is perfect load balancing, while the

upper bound corresponds to a worst case scenario where

the slowest task is scheduled last, after all other p−1 tasks

finished in at most (p− 1) · A/k time.

Since MapReduce does not overlap the map phase with

the reduce phase, both can be treated separately using the

make-span theorem. For simplicity, we focus in this paper

on the lower bound only. The upper bound can be estimated

in a similar fashion.

T low
M = AM ·

pM
kM

T low
R = AR ·

pR
kR

More complexity is introduced by the shuffle phase, for

which the first wave overlaps with the map phase and thus

the resulting overhead needs to be considered separately

(denoted AS1). For the rest of the shuffle waves (pR/kR−
1), the make-span theorem can be applied as usual:

T low
S = AS · (

pR
kR

− 1) +AS1

Thus, the estimated completion time for a single iteration

is:

T low = T low
M + T low

R + T low
S

Considering all iterations, the total estimated completion

time is:



T low =

I∑

i=1

(T low
Mi

+ T low
Ri

+ T low
Si

)

C. Performance model for hybrid jobs

In a hybrid setup, two important aspects affect the

estimations discussed above: (1) while the asynchronous re-

balancing progresses in the background, it generates extra

overhead, which will slow down the map/shuffle/reduce

(2) due to the weak link between the on-premise and off-

premise VMs, the data transfer during the shuffle may

experience a slowdown.

Due to the fact that (2) is highly complex and dependent

on the nature of the application, we focus in this work on

(1), leaving (2) as future work. Thus, we propose to amend

the equations above such that they reflect the rebalancing

aspect. Specifically, two important factors characterize this

aspect. First, while the rebalancing is in progress, the

mappers become slower due to the additional background

activity. We denote this slowdown as α. It remains greater

than 1 while the rebalance is in progress and equals 1

after the rebalance is complete. Second, as more data

is transferred off-premise during the rebalancing, more

locality can be exploited by the scheduler, which effectively

translates to more mappers that are scheduled off-premise.

For simplicity, we adopt a simple heuristic to account for

this effect that assumes only rack-local mappers will be

executed the scheduler. This roughly corresponds to real

life: only a negligible fraction of mappers are not scheduled

rack-local. Furthermore, we make another simplifying as-

sumption: all mappers are scheduled at the beginning of the

iteration. Under these circumstances, the total number of

parallel mappers during iteration i (denoted kMi
) depends

on the progress of the rebalancing at the beginning of the

iteration, ranging from the map slots available on-premise

only (kM1
) to the map slots available both on-premise and

off-premise after the rebalancing is complete.

For the rest of this paper, we refer to α and kMi
as

the hybrid rebalance factors. Thus, for the hybrid case, the

estimated completion time for the map phase is:

T low
M =

I∑

i=1

α · AM ·
pM
kMi

T up
M =

I∑

i=1

α · AM ·
pM − 1

kMi

+ λ

D. Methodology to leverage the hybrid performance model

In order to make use of the hybrid performance model

introduced above for actual predictions, we need to estimate

the hybrid rebalance factors. However, due to the complex

inter-play between the system, the virtualization layer and

the MapReduce framework that depends on a variety of

parameters (i.e., point-to-point bandwidth between VMs,

aggregated bandwidth of the weak link between on-premise

and off-premise VMs, I/O pressure on the local storage,

etc.), it is not easy to determine them analytically.

Thus, we propose to establish them experimentally, by

using a series of micro-benchmarks that are executed on

the hybrid setup independently of the application. More

specifically, given N on-premise VMs and a desired num-

ber of M off-premise VMs, we create a similar setup

as if running the actual application (i.e. same data size,

number of mappers, etc.). However, instead of running

the application, we run an I/O intensive benchmark that

approximates the application behavior for the duration of

the re-balancing.

To obtain α, we simply divide the result of the hybrid

benchmark by the baseline (i.e. same I/O intensive bench-

mark running on-premise only). To obtain kMi
, we correlate

the rebalance progress observed during the I/O benchmark

with the moment when each iteration starts for the real

application as follows:

kMi
= min(kmax

M , BM (TMi−1
)/DM )

In the equation above, BM (t) denotes the amount of

data transferred off-premise at moment t, kmax
M denotes the

total number of mapper slots available from the N + M
VMs both on-premise and off-premise, while DM denotes

the data size processed by each mapper. By convention,

TM0
= 0.

Note that it is not necessary to run the I/O intensive

micro-benchmarks for before running every real applica-

tion: these results can be cached and reused later if the

off-premise setup is unchanged (e.g. same type of VMs,

same aggregated throughput between the off-premise and

on-premise nodes). Since in many cases it is possible

to use historical micro-benchmark results to calculate the

hybrid rebalance factors, we differentiate the running of the

I/O micro-benchmarks from the actual calculation of the

factors, which we henceforth refer to as micro-calibration.

Once the micro-calibration is done, T low and T up can be

estimated as described in Section V-C. To find an optimal

configuration, one can simply take a set of representative

values for M and calculate T low for each M . Armed with

the knowledge of how long the execution time is likely to be

for a variable M , it is easy to estimate whether a speed-up is

possible in the first place, and, if so, how much extra cost

would be necessary to achieve it. Furthermore, since we

target iterative applications, we can estimate the completion

times for an arbitrary number of iterations, which aids in

choosing the right trade-off between cost and precision of

results.

VI. EVALUATION

A. Experimental setup

The experiments for this work were performed on the

Kinton testbed of the HPC&A group based at Universitat

Jaume I. It consists of 8 nodes, all of which are inter-

connected with 1 Gbps network links and split into two



Fig. 1. Hybrid IaaS OpenStack cloud example: one fat node on-premise and two fat nodes off-premise

groups: four nodes feature an Intel Xeon X3430 CPU (4

Cores), HDD local storage of 500 GB, and 4 GB of RAM.

These less powerful nodes (henceforth called thin) are used

for management tasks. The other four nodes feature two

Intel Xeon E5-2630v3 (2 x 8 Cores), HDD local storage

of 1 TB, and 64 GB of RAM. These more powerful nodes

(henceforth called fat) are used to host the VMs.
In order to get as close as possible to a real-life hy-

brid cloud, we configure two separate IaaS clouds based

on OpenStack Icehouse and QEMU/KVM 0.12.1 as the

hypervisor. One of the OpenStack deployments acts as

the on-premise cloud, while the other one acts as the

off-premise cloud. A fully-featured OpenStack deployment

requires two management nodes: one controller node that

manages the compute nodes where the VMs are hosted

and one network node that manages the cloud networking,

which is managed separately due to the complexity of the

networking technologies involved.
More specifically, in a typical configuration based on

neutron (the standard OpenStack network management ser-

vice), there are three conceptually separated communication

domains: the management network (i.e., used for control

messages and administrative traffic), the internal network

(i.e., traffic between the VM instances using private IP

addresses) and the external network (i.e., traffic between

the VM instances and the outside of the cloud). In this

configuration, the VM instances are configured to directly

communicate with each other via the links of their compute

node hosts. However, all communication with the outside

of the cloud is routed through the network node, which is

equipped with three NICs, each dedicated to a communi-

cation domain. Thus, in a real-life hybrid cloud setup that

involves two OpenStack deployments, any communication

between on-premise and off-premise VMs will pass through

the network nodes, which become the weak link (i.e., total

aggregated throughput between all on-premise and off-

premise VMs is 1 Gbps).
For our experiments, we created a new VM flavor:

i2.xlarge. This flavor features 4 vCPU, HDD local storage

of 100 GB and 16 GB of RAM. Thus, each compute node

has the capacity to host 4 VMs simultaneously. Since two

VMs that are co-located on the same compute node can

communicate at much higher rate that two VMs that are

hosted on different compute nodes, we limit the network

capacity of this flavor to 1 Gbps to obtain a close-to-

uniform environment where all VMs can communicate with

each other at the same rate, regardless where they are

located. This setup is illustrated in Figure 1, using one fat

on-premise node and two fat off-premise nodes. On the on-

premise part we provision 4 VMs in which Hadoop version

2.6.0 was deployed. One of these VMs is used as Hadoop

master and the others as Hadoop slaves. Specifically, each

Hadoop slave is configured both as a HDFS DataNode

and as a YARN slave, with enough capacity to run 4

mappers and reducers simultaneously. On the off-premise

part, we provision 4 VMs on each fat node, with a variable

number of fat nodes ranging from one to three. In order to

extend the Hadoop deployment over the off-premise VMs,

we start the relevant services (i.e., HDFS DataNodes and

YARN runtime) on the off-premise VMs. These services

will report to the master, which integrates them into the

Hadoop deployment. Rack-awareness is achieved by cre-

ating two groups corresponding to the on-premise an off-

premise VMs and assigning each HDFS DataNode to the

appropriate group.

B. Overview

We run extensive experiments with two real-life MapRe-

duce iterative applications, each described in greater detail

in Section VI-D and Section VI-E. Both applications exhibit

a reduction phase that involves a negligible amount of data

compared with the map phase, which is a frequent real-life

scenario that emphasizes the map phase. The goal of these

experiments is two-fold: (1) to demonstrate the feasibility

of our re-balancing proposal; (2) to validate the hybrid

performance prediction model introduced in Section V



against the results observed in real life.

First, we run a series of I/O intensive benchmarks that

correspond to the micro-calibration mentioned in Sec-

tion V-D. To this end, we rely on the TestDFSIO micro-

benchmark, which is a standard Hadoop tool that measures

the HDFS read and write throughput using a predefined

number of concurrent readers and writers.

Second, we run a series of experiments that study the

strong scalability of the application on a single OpenStack

cloud. Since there is no weak link in this setup, these

experiments reveal the maximum theoretical potential for

speed-up in a hybrid setup. We refer to this series of ex-

periments as Baseline. Then, we run the same experiments

in a hybrid setup, where we fix the number of on-premise

VMs and vary the number of off-premise VMs. We refer to

these experiments as Hybrid-real. We discuss these results

in comparison with Baseline to address goal (1).

Forth, based on the results from Baseline experiments

and the micro-calibration, we extract the relevant applica-

tion metrics and compute the hybrid rebalancing factors

to estimate T low
M and T up

M using the equations described in

Section V-C. Since the reduce phase is negligible compared

with the map phase, T low ≈ T low
M and T up ≈ T up

M . We

then discuss these results in relationship with Hybrid-real

to address goal (2).

C. Micro-calibration

In this section we illustrate how to perform the micro-

calibration. To demonstrate how to reuse the results of

the micro-benchmarking for multiple applications, we fix

the application input data at 20 GB and the HDFS chunk

size (corresponding to the size of data per mapper DM ) at

64 MB, which means a total of 300 map tasks (pM ) are

needed.

First, the data is generated by running TestDFSIO in

write mode in an HDFS deployment spanning 3 on-premise

VM instances. After the initial data was written, the HDFS

deployment is extended by a variable number of additional

off-premise VM instances. Then, the hybrid rebalancing

is started at the same time with another TestDFSIO that

runs this time in read mode using a number of concurrent

readers equal to the number of VM instances. Meanwhile,

the rebalancing moves at least one replica for each chunk

of data from the on-premise to the off-premise nodes.

While the experiment is running, we monitor the amount of

data that accumulates off-premise during the rebalancing.

We record both this progress and the metrics reported by

TestDFSIO, which is run repeatedly in an iterative fashion

until the rebalancing is complete.

The results of the rebalancing progress are depicted in

Figure 2. As can be observed, the off-premise HDFS data

accumulates steadily in all configurations. Furthermore,

there is little difference between the various hybrid configu-

rations, which enables an estimation of BM (t) (introduced

in Section VI-C) even when micro-benchmarking results

are not available for a particular configuration.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  50  100  150  200  250  300  350  400  450  500  550  600  650

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

M
B

)

Rebalance time (s)

3-On-3-Off
3-On-6-Off
3-On-9-Off

3-On-12-Off

Fig. 2. TestDFIO micro-calibration: rebalance progress for 20 GB total
data

TABLE I
TestDFSIO AVERAGE COMPLETION TIME PER ITERATION

Configuration Time / iteration Alpha
3-on-0-off 276s N/A
3-on-3-off 472s 1.70
3-on-6-off 471s 1.70
3-on-9-off 485s 1.75
3-on-12-off 416s 1.5

The average completion time per concurrent read itera-

tion for TestDFSIO is illustrated in Table I. By convention,

we denote a configuration with N on-premise VMs and

M off-premise VMs as N−on−M−off. 3−on−0−off is

the baseline for which no re-balancing is present. Both

the baseline and the hybrid TestDFSIO experiments are

repeated 10 times. These results are then used to calcu-

late α, included in the table. As can be observed, the

re-balancing introduces significant background overhead

that reduces the concurrent read throughput and lowers

the overall completion time per iteration by up to 75%.

Also, interesting to observe is that α remains very close

for all hybrid configuration except 3−on−12−off. Thus,

the previous observation about a rough estimation being

possible even when no micro-benchmarks are available for

a particular configuration holds for α too.

D. KMeans

Our next series of experiments focus on K-Means [27], a

widely used application in a multitude of contexts: vector

quantization in signal processing, cluster analysis in data

mining, pattern classification and feature extraction for

machine learning, etc. K-Means partitions a set of multi-

dimensional vectors into k sets, such that the sum of squares

of distances between all vectors from the same set and their

mean is minimized. This is typically done by using iterative

refinement: at each step the new means are calculated based

on the results from the previous iteration, until they remain

unchanged (with respect to a small epsilon). K-Means was

shown to be efficiently parallelizable and scales well using



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 3  6  9  12  15

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Number of instances

Baseline
Hybrid-real

Single-prediction-up
Single-prediction-low
Hybrid-prediction-up

Hybrid-prediction-low

(a) Strong scalability: predicted vs. real total completion time for 10
iterations for a single cloud and a hybrid cloud setup. The measured
completion time observed on the single cloud is the Baseline. Lower
is better.

 0

 100

 200

 300

 400

 500

 600

 1  2  3  4  5  6  7  8  9  10

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Iteration number

3-On-0-Off
3-On-3-Off
3-On-6-Off
3-On-9-Off

3-On-12-Off

(b) Iteration analysis: completion time per iteration for an increasing
number of off-premise VM instances. Lower is better.

Fig. 3. K-Means: iterative clustering (10 iterations) of a 20 GB dataset.

MapReduce [28], which makes it a popular tool to analyze

large quantities of data at large scale.

For the purpose of this work, we use the MapReduce

K-Means implementation that is part of the Mahout 0.10

collection of machine learning algorithms. This implemen-

tation generates only a minimal amount of intermediate

data at each iteration (i.e., the mean for each of the k
sets), however it typically analyses a large amount of input

data that remains unchanged between the iterations. Thus,

it is classified as a map-intensive job. We generate 20 GB

worth of input that is processed in 10 iterations. The data is

generated using the data generator included in Mahout and

is uploaded to HDFS before starting each experiment. For

comparison, the shuffle data for each iteration is in the order

of several MB, which is why we can consider the reduction

phase negligible (i.e., T low ≈ T low
M and T up ≈ T up

M ).

First, we run the Baseline experiment by deploying a

single OpenStack cloud where we vary the number of VMs

allocated to the Hadoop deployment. As can be observed

in Figure 3(a), with an increasing size of the Hadoop

deployment, K-Means experiences a steady drop in the total

completion time, confirming its potential to achieve strong

scalability. Furthermore, applying the performance model

for on-premise jobs introduced in Section reveals a good

estimation of the total completion time: the Baseline stays

within the lower (Single-prediction-low) and upper (Single-

prediction-up) prediction bounds at all times. Furthermore,

there is almost a perfect overlap between Single-prediction-

up and Baseline, while Single-prediction-low provides an

over-optimistic estimation that deviates by at most 20%.

Next, we run the Hybrid-real experiment, where we

deploy a hybrid setup consisting of 3 on-premise VMs and a

variable number of off-premise VMs (X axis depicts total

number of VMs). Initially, Hadoop is deployed only on

the on-premise VMs and is extended as described in the

Section VI-A, with the asynchronous rebalancing and the

application being started simultaneously. The total comple-

tion time can be observed in Figure 3(a). Interesting to note

is the drop in completion time with increasing number of

off-premise VMs. As expected, the rebalancing overhead in

the hybrid case has a negative impact on the strong scala-

bility when compared with Baseline (up to of 40% increase

in execution time), however the scalability trend is clearly

visible, confirming the viability of adopting our proposal

to extend iterative MapReduce jobs using additional VMs

leased from an off-premise cloud. Furthermore, by using

the relevant application metrics extracted from the Base-

line experiments (i.e., AM , λ) and the micro-calibration

results from Section VI-C in the equations described in

Section V-C, we obtain the lower (Hybrid-prediction-low)

and upper (Hybrid-prediction-up) total estimated hybrid

completion time. As can be observed, we can see again

a good prediction: the real result stays within the lower

and upper bound, while the error is at most 8% for the

lower bound and 4% for the upper bound.

To understand these results better, we zoom in Fig-

ure 3(b) on the completion time per iteration. We use the

same N−on−M−off notation for each configuration as ex-

plained in Section VI-C. As expected, for the 3−on−0−off

case, the completion time per iteration remains constant.

However, in the 3−on−M−off cases, a large gap between

the first and the rest of the iterations is visible. This is

explained by the fact that the re-balancing finishes during

the first iteration, such that beginning with the second

iteration, the data locality can be fully exploited. Since

the invariant input data is reused at each iteration, most of

the increase in the total completion time is due to the first

iteration. As a consequence, the more iterations are needed

during the computation, the better this initial overhead will

be amortized.



 0

 500

 1000

 1500

 2000

 2500

 3000

 3  6  9  12  15

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Number of instances

Baseline
Hybrid-real

Single-prediction-up
Single-prediction-low
Hybrid-prediction-up

Hybrid-prediction-low

(a) Strong scalability: predicted vs. real total completion time for 10
iterations for a single cloud and a hybrid cloud setup. The measured
completion time observed on the single cloud is the Baseline. Lower
is better.

 0

 100

 200

 300

 400

 500

 600

 1  2  3  4  5  6  7  8  9  10

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Iteration number

3-On-0-Off
3-On-3-Off
3-On-6-Off
3-On-9-Off

3-On-12-Off

(b) Iteration analysis: completion time per iteration for an increasing
number of off-premise VM instances. Lower is better.

Fig. 4. IGrep: iterative text analysis (10 iterations) of a 20 GB dataset.

E. Iterative Grep

The second application we evaluate is iterative grep

(IGrep), which is a popular analytics tool for large unstruc-

tured text. Iterative grep consists of a set of independent

grep jobs that find all string matches of a given regular

expression and sorts them according to the number of

matches. The iterative nature is exhibited in the fact that

the input data remains the same, but the regular expression

changes as a refinement of the previous iteration. For

example, one may want to count how many times a certain

concept is present in the Wikipedia articles, and, depending

on the result, prepare the next regular expression in order

to find correlations with another concept. Since the regular

expression is typically an exact pattern, the output of the

mappers is very simple and consists of a small number

of key-value pairs that are reduced to a single key-value

pair. Thus, it can be classified as a typical map-intensive

MapReduce job.

For the purpose of this work, we use the standard grep

implementation that comes with the Hadoop distribution.

We use 20 GB worth of Wikipedia articles as input data

and 10 keywords to run 10 iterations over this input data,

which is uploaded to HDFS before each experiment. The

shuffle data for each iteration is less than one MB, which

is why we can consider the reduction phase negligible (i.e.,

T low ≈ T low
M and T up ≈ T up

M ).

As can be observed in Figure 4(a), for the Baseline

experiment (measured total completion time for a single

cloud), there is again evidence of strong scalability. This

is understandable, since grep is almost embarrassingly

parallel. However, there is a slight degradation of scalability

for an increasing number of VMs, due to the increas-

ing overhead of parallelization. Applying the performance

model for on-premise jobs (Section VI-D), we observe the

following estimations for the total completion time: the

lower bound (Single-prediction-low) under-estimates by up

to 24% and the upper bound over-estimates by up to 15%,

which places the measured total completion time within the

lower and upper bound.
For the Hybrid-real experiment, we deploy a hybrid

setup that keeps 3 on-premise VMs and adds a variable

number of off-premise VMs. The total completion time

can be observed in Figure 4(a) (total number of VMs on

X axis). Again, we observe a drop in completion time

with increasing number of off-premise VMs, which con-

firms the viability of adopting our re-balancing proposal.

Furthermore, the lower (Hybrid-prediction-low) and upper

(Hybrid-prediction-up) estimated hybrid completion time

keep the measured result within their limits up until 6 off-

premise VMs. However, when increasing the number of off-

premise VMs beyond 6, both the lower and upper bound

under-estimate the measured completion time: by up to 25%

and 12% respectively.

These results are better understood by analyzing the

per iteration completion times, which are depicted in Fig-

ure 4(b). Surprisingly, for the 3−on−0−off case, the com-

pletion time per iteration remains constant only after a few

iterations, which hints at possible OS caching effects for the

input data read from HDFS at each iteration. In the hybrid

configurations, it can be observed that the rebalancing does

not finish during the first iteration for the case when a

large number of off-premise VMs is used (i.e. 9 and 12).

While the hybrid estimations exhibit larger errors than in

the case of K-Means, so do the single cloud estimations,

which means that the hybrid aspect was accurately captured

but the application is inherently more unpredictable due to

its increased complexity.

VII. CONCLUSIONS

Hybrid clouds open an entire new horizon in the big

data analytics landscape, effectively enabling on-premise



resource owners to extend complex workloads beyond

the capacity of their infrastructure by leasing off-premise

resources. However, the need to transfer large data sizes off-

premise poses a difficult challenge to the ability to exploit

data locality efficiently.

This paper contributed with a novel proposal that ad-

dresses this challenge for iterative MapReduce applications.

It transparently manages data movements asynchronously

in an efficient fashion without invasive changes to the

MapReduce framework or the underlying storage layer.

At the same time, it is able to predict the runtime of

the application for a variety of hybrid configurations, by

combining analytical modeling with micro-calibration. Re-

sults using two real-life iterative MapReduce applications

show excellent hybrid scalability potential that follows a

similar trend as the single-site scalability except for an

initial overhead during the first few iterations, whose impact

on the overall execution time is diminished with increasing

number of iterations. Furthermore, our prediction of the

execution time for a hybrid setup matches the accuracy

of the techniques used in single-site setups, with maxi-

mum upper/lower bound errors of 4%/8% and, respectively,

12%/25%.

Encouraged by these results, we plan to broaden the

scope of our work in future efforts. In particular, we focused

on map-intensive applications where the reduce phase is

negligible in comparison. Thus, one interesting direction is

to complement the current work with an analysis of reduce-

intensive jobs in a hybrid setup: study of the weak link

and interferences with the rebalancing, refined prediction

equations, etc.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” Commun. ACM, vol. 53, no. 4, pp.
50–58, Apr. 2010.

[2] P. Hofmann and D. Woods, “Cloud computing: The limits of public
clouds for business applications,” Internet Computing, IEEE, vol. 14,
no. 6, pp. 90–93, Nov 2010.

[3] T. Guo, U. Sharma, T. Wood, S. Sahu, and P. Shenoy, “Seagull:
Intelligent cloud bursting for enterprise applications,” in Proceedings

of the 2012 USENIX Conference on Annual Technical Conference,
ser. USENIX ATC’12, Berkeley, CA, USA, 2012, pp. 33–33.

[4] B. Javadi, J. Abawajy, and R. Buyya, “Failure-aware resource
provisioning for hybrid cloud infrastructure,” J. Parallel Distrib.

Comput., vol. 72, no. 10, pp. 1318–1331, Oct. 2012.
[5] “Hybrid cloud market: Forecasts and analysis (2013 2018),” Market

Research Insight, Markets and Markets, 2013.
[6] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, “Intel-

ligent workload factoring for a hybrid cloud computing model,” in
Services - I, 2009 World Conference on, July 2009, pp. 701–708.

[7] C.-H. Suen, M. Kirchberg, and B. S. Lee, “Efficient migration
of virtual machines between public and private cloud,” in Cloud

Computing Technology and Science (CloudCom), 2011 IEEE Third

International Conference on, Nov 2011, pp. 549–553.
[8] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing

on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan.
2008.

[9] W.-T. Tsai, P. Zhong, J. Elston, X. Bai, and Y. Chen, “Service
replication strategies with mapreduce in clouds,” in ISADS ’11: 10th

International Symposium on Autonomous Decentralized Systems,
Kobe, Japan, 2011, pp. 381–388.

[10] F. Tian and K. Chen, “Towards optimal resource provisioning for
running mapreduce programs in public clouds,” in CLOUD ’11: 2011

IEEE International Conference on Cloud Computing, Washington
DC, USA, 2011, pp. 155–162.

[11] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, “Mapreduce in
the clouds for science,” in Cloud Computing Technology and Sci-

ence (CloudCom), 2010 IEEE Second International Conference on.
IEEE, 2010, pp. 565–572.

[12] X. Zhang, L. T. Yang, C. Liu, and J. Chen, “A scalable two-
phase top-down specialization approach for data anonymization
using mapreduce on cloud,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 25, no. 2, pp. 363–373, 2014.
[13] B. Nicolae, P. Riteau, and K. Keahey, “Bursting the Cloud Data

Bubble: Towards Transparent Storage Elasticity in IaaS Clouds,” in
IPDPS ’14: Proc. 28th IEEE International Parallel and Distributed

Processing Symposium, Phoenix, USA, 2014, pp. 135–144.
[14] ——, “Transparent Throughput Elasticity for IaaS Cloud Storage

Using Guest-Side Block-Level Caching,” in UCC’14: 7th IEEE/ACM

International Conference on Utility and Cloud Computing, London,
UK, 2014.

[15] B. Sharma, T. Wood, and C. R. Das, “Hybridmr: A hierarchical
mapreduce scheduler for hybrid data centers,” in Distributed Com-

puting Systems (ICDCS), 2013 IEEE 33rd International Conference

on. IEEE, 2013, pp. 102–111.
[16] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and

A. Rasin, “Hadoopdb: an architectural hybrid of mapreduce and
dbms technologies for analytical workloads,” Proceedings of the

VLDB Endowment, vol. 2, no. 1, pp. 922–933, 2009.
[17] K. Shirahata, H. Sato, and S. Matsuoka, “Hybrid map task scheduling

for gpu-based heterogeneous clusters,” in Cloud Computing Tech-

nology and Science (CloudCom), 2010 IEEE Second International

Conference on. IEEE, 2010, pp. 733–740.
[18] M. M. Rafique, A. R. Butt, and D. S. Nikolopoulos, “A capabilities-

aware framework for using computational accelerators in data-
intensive computing,” J. Parallel Distrib. Comput., vol. 71, no. 2,
pp. 185–197, 2011.

[19] M. M. Rafique, B. Rose, A. R. Butt, and D. S. Nikolopoulos,
“Cellmr: A framework for supporting mapreduce on asymmetric
cell-based clusters,” in Parallel Distributed Processing, 2009. IPDPS

2009. IEEE International Symposium on. IEEE, 2009, pp. 1–12.
[20] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-

optimal scheduling in hybrid iaas clouds for deadline constrained
workloads,” in Cloud Computing (CLOUD), 2010 IEEE 3rd Inter-

national Conference on, July 2010, pp. 228–235.
[21] S. Imai, T. Chestna, and C. A. Varela, “Accurate resource prediction

for hybrid iaas clouds using workload-tailored elastic compute units,”
in IEEE/ACM 6th International Conference on Utility and Cloud

Computing, UCC 2013, Dresden, Germany, December 9-12, 2013,
2013, pp. 171–178.

[22] M. Mattess, R. Calheiros, and R. Buyya, “Scaling mapreduce appli-
cations across hybrid clouds to meet soft deadlines,” in Advanced

Information Networking and Applications (AINA), 2013 IEEE 27th

International Conference on, March 2013, pp. 629–636.
[23] T. Bicer, D. Chiu, and G. Agrawal, “A framework for data-intensive

computing with cloud bursting,” in CLUSTER ’11: The 2011 IEEE

International Conference on Cluster Computing, 2011, pp. 169–177.
[24] H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, “Proactive workload

management in hybrid cloud computing,” Network and Service

Management, IEEE Transactions on, vol. 11, no. 1, pp. 90–100,
2014.

[25] K. Shvachko, H. Huang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in 26th IEEE (MSST2010) Symposium on

Massive Storage Systems and Technologies, May 2010.
[26] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic

Resource Inference and Allocation for Mapreduce Environments,”
in ICAC ’11: The 8th ACM International Conference on Autonomic

Computing, Karlsruhe, Germany, 2011, pp. 235–244.
[27] H.-H. Bock, “Clustering methods: A history of K-Means algo-

rithms,” in Selected Contributions in Data Analysis and Classifi-

cation, ser. Studies in Classification, Data Analysis, and Knowledge
Organization. Springer Berlin Heidelberg, 2007, pp. 161–172.

[28] W. Zhao, H. Ma, and Q. He, “Parallel K-Means clustering based on
MapReduce,” in CloudCom ’09: Proceedings of the 1st International

Conference on Cloud Computing, Beijing, China, 2009, pp. 674–679.


