M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz et al., A view of cloud computing, Communications of the ACM, vol.53, issue.4, pp.50-58, 2010.
DOI : 10.1145/1721654.1721672

P. Hofmann and D. Woods, Cloud Computing: The Limits of Public Clouds for Business Applications, IEEE Internet Computing, vol.14, issue.6, pp.90-93, 2010.
DOI : 10.1109/MIC.2010.136

T. Guo, U. Sharma, T. Wood, S. Sahu, and P. Shenoy, Seagull: Intelligent cloud bursting for enterprise applications, Proceedings of the 2012 USENIX Conference on Annual Technical Conference, ser. USENIX ATC'12, pp.33-33

B. Javadi, J. Abawajy, and R. Buyya, Failure-aware resource provisioning for hybrid Cloud infrastructure, Journal of Parallel and Distributed Computing, vol.72, issue.10, pp.1318-1331, 2012.
DOI : 10.1016/j.jpdc.2012.06.012

URL : http://dro.deakin.edu.au/eserv/DU:30047830/abawajy-failureaware-2012.pdf

H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, Intelligent Workload Factoring for a Hybrid Cloud Computing Model, 2009 Congress on Services, I, pp.701-708, 2009.
DOI : 10.1109/SERVICES-I.2009.26

C. Suen, M. Kirchberg, and B. S. Lee, Efficient Migration of Virtual Machines between Public and Private Cloud, 2011 IEEE Third International Conference on Cloud Computing Technology and Science, pp.549-553, 2011.
DOI : 10.1109/CloudCom.2011.83

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.1145/1327452.1327492

W. Tsai, P. Zhong, J. Elston, X. Bai, and Y. Chen, Service Replication Strategies with MapReduce in Clouds, 2011 Tenth International Symposium on Autonomous Decentralized Systems, pp.381-388, 2011.
DOI : 10.1109/ISADS.2011.57

F. Tian and K. Chen, Towards Optimal Resource Provisioning for Running MapReduce Programs in Public Clouds, 2011 IEEE 4th International Conference on Cloud Computing, pp.155-162, 2011.
DOI : 10.1109/CLOUD.2011.14

T. Gunarathne, T. Wu, J. Qiu, and G. Fox, MapReduce in the Clouds for Science, 2010 IEEE Second International Conference on Cloud Computing Technology and Science, pp.565-572, 2010.
DOI : 10.1109/CloudCom.2010.107

X. Zhang, L. T. Yang, C. Liu, and J. Chen, A scalable twophase top-down specialization approach for data anonymization using mapreduce on cloud Parallel and Distributed Systems, IEEE Transactions on, vol.25, issue.2, pp.363-373, 2014.

B. Nicolae, P. Riteau, and K. Keahey, Bursting the Cloud Data Bubble: Towards Transparent Storage Elasticity in IaaS Clouds, 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pp.135-144, 2014.
DOI : 10.1109/IPDPS.2014.25

URL : https://hal.archives-ouvertes.fr/hal-00947599

B. Sharma, T. Wood, and C. R. Das, HybridMR: A Hierarchical MapReduce Scheduler for Hybrid Data Centers, 2013 IEEE 33rd International Conference on Distributed Computing Systems, pp.102-111, 2013.
DOI : 10.1109/ICDCS.2013.31

A. Abouzeid, K. Bajda-pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin, HadoopDB, Proceedings of the VLDB Endowment, pp.922-933, 2009.
DOI : 10.14778/1687627.1687731

K. Shirahata, H. Sato, and S. Matsuoka, Hybrid Map Task Scheduling for GPU-Based Heterogeneous Clusters, 2010 IEEE Second International Conference on Cloud Computing Technology and Science, pp.733-740, 2010.
DOI : 10.1109/CloudCom.2010.55

M. M. Rafique, A. R. Butt, and D. S. Nikolopoulos, A capabilities-aware framework for using computational accelerators in data-intensive computing, Journal of Parallel and Distributed Computing, vol.71, issue.2, pp.185-197, 2011.
DOI : 10.1016/j.jpdc.2010.09.004

M. M. Rafique, B. Rose, A. R. Butt, and D. S. Nikolopoulos, CellMR: A framework for supporting mapreduce on asymmetric cell-based clusters, 2009 IEEE International Symposium on Parallel & Distributed Processing, pp.1-12, 2009.
DOI : 10.1109/IPDPS.2009.5161062

R. Van-den-bossche, K. Vanmechelen, and J. Broeckhove, Costoptimal scheduling in hybrid iaas clouds for deadline constrained workloads, Cloud Computing 2010 IEEE 3rd International Conference on, pp.228-235, 2010.

S. Imai, T. Chestna, and C. A. Varela, Accurate Resource Prediction for Hybrid IaaS Clouds Using Workload-Tailored Elastic Compute Units, 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing, pp.171-178, 2013.
DOI : 10.1109/UCC.2013.40

M. Mattess, R. Calheiros, and R. Buyya, Scaling MapReduce Applications Across Hybrid Clouds to Meet Soft Deadlines, 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), pp.629-636, 2013.
DOI : 10.1109/AINA.2013.51

T. Bicer, D. Chiu, and G. Agrawal, A Framework for Data-Intensive Computing with Cloud Bursting, 2011 IEEE International Conference on Cluster Computing, pp.169-177, 2011.
DOI : 10.1109/CLUSTER.2011.21

H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, Proactive Workload Management in Hybrid Cloud Computing, IEEE Transactions on Network and Service Management, vol.11, issue.1, pp.90-100, 2014.
DOI : 10.1109/TNSM.2013.122313.130448

K. Shvachko, H. Huang, S. Radia, and R. Chansler, The Hadoop Distributed File System, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), 2010.
DOI : 10.1109/MSST.2010.5496972

A. Verma, L. Cherkasova, and R. H. Campbell, ARIA, Proceedings of the 8th ACM international conference on Autonomic computing, ICAC '11, pp.235-244, 2011.
DOI : 10.1145/1998582.1998637

H. Bock, Clustering methods: A history of K-Means algorithms , " in Selected Contributions in Data Analysis and Classification , ser. Studies in Classification, Data Analysis, and Knowledge Organization, pp.161-172, 2007.

W. Zhao, H. Ma, and Q. He, Parallel K-Means Clustering Based on MapReduce, CloudCom '09: Proceedings of the 1st International Conference on Cloud Computing, pp.674-679, 2009.
DOI : 10.1007/978-3-642-10665-1_71