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A simple recurrence formula for the number
of rooted maps on surfaces by edges and
genus.

Sean Carrell1∗ and Guillaume Chapuy2†

1Department of Combinatorics & Optimization, University of Waterloo, Waterloo, Canada
2CNRS and LIAFA, Université Paris Diderot – Paris 7, Paris, France

Abstract. We establish a simple recurrence formula for the number Qn
g of rooted orientable maps counted by edges

and genus. The formula is a consequence of the KP equation for the generating function of bipartite maps, coupled
with a Tutte equation, and it was apparently unnoticed before. It gives by far the fastest known way of computing
these numbers, or the fixed-genus generating functions, especially for large g. The formula is similar in look to the
one discovered by Goulden and Jackson for triangulations (although the latter does not rely on an additional Tutte
equation). Both of them have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved
– should such an interpretation exist, the history of bijective methods for maps would tend to show that the case
treated here is easier to start with than the one of triangulations.

Résumé. Nous établissons une formule de récurrence simple pour le nombre Qg
n de cartes enracinées de genre g à

n arêtes. Cette formule est une conséquence relativement simple du fait que la série génératrice des cartes biparties
est une solution de l’équation KP et d’une équation de Tutte, et elle était apparemment passée inaperçue jusque là.
Elle donne de loin le moyen le plus rapide pour calculer ces nombres, en particulier quand g est grand. La formule
est d’apparence similaire à celle découverte par Goulden et Jackson pour les triangulations (quoique cette dernière
ne repose pas sur une équation de Tutte additionnelle). Les deux formules ont une saveur très combinatoire, mais
trouver une interprétation bijective reste un problème ouvert – mais si une telle interprétation existe, l’histoire des
méthodes bijectives pour les cartes tendrait à montrer que le cas traité ici est plus facile pour commencer que celui
des triangulations.

Keywords: Enumeration, maps on surfaces, quadrangulations, KP hierarchy

1 Introduction and main formula
A map is a connected graph embedded in a compact connected orientable surface in such a way that the
regions delimited by the graph, called faces, are homeomorphic to open discs. Loops and multiple edges
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are allowed. A rooted map is a map in which an angular sector incident to a vertex is distinguished,
and the latter is called the root vertex. The root edge is the edge encountered when traversing the dis-
tinguished angular sector clockwise around the root vertex. Rooted maps are considered up to oriented
homeomorphisms preserving the root sector.

A map is bipartite if its vertices can be coloured with two colors, say black and white, in such a way that
each edge links a white and a black vertex. Unless otherwise mentioned, bipartite maps will be endowed
with their canonical bicolouration in which the root vertex is coloured white. The degree of a face in a
map is equal to the number of edge sides along its boundary, counted with multiplicity. Note that in a
bipartite map every face has even degree, since colours alternate along its boundary.

A quadrangulation is a map in which every face has degree 4. There is a classical bijection, that goes
back to Tutte [20], between bipartite quadrangulations with n faces and genus g, and rooted maps with n
edges and genus g. It is illustrated on Figure 1.

For g, n ≥ 0, we let Qng be the number of rooted bipartite quadrangulations of genus g with n faces.
Equivalently, by Tutte’s construction, Qng is the number of rooted maps of genus g with n edges. By
convention we admit a single map with no edges and which has genus zero. Our main result is the
following recurrence formula:

Theorem 1 The number Qng of rooted bipartite quadrangulations of genus g with n faces satisfies the
following recurrence relation:

n+ 1

6
Qng =

4n− 2

3
Qn−1
g +

(2n− 3)(2n− 2)(2n− 1)

12
Qn−2
g−1 +

1

2

∑
k+`=n
k,`≥1

∑
i+j=g
i,j≥0

(2k−1)(2`−1)Qk−1
i Q`−1

j ,

for n ≥ 1, with the initial conditions Q0
0 = 1 and Q0

g = 0 for g ≥ 1.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1. This result relies
on both classical facts about the KP equation for bipartite maps, and an elementary Lemma obtained by
combinatorial means (Lemma 3). In Section 3, we give a corollary of Theorem 1 in terms of generating
functions (Theorem 4). In particular, we obtain a very efficient recurrence formula that can be used to
compute the generating function of maps of fixed genus inductively. Finally, in Section 4, we comment
on the differences between what we do here and other known approaches to the problem: in brief, our
method is much more powerful for the particular problem treated here, but we still don’t know whether it
can be applied successfully to cases other than bipartite quadrangulations.

2 Proof of the main formula
2.1 Bipartite maps and KP equation
The first element of our proof is the fact that the generating function for bipartite maps is a solution to the
KP equation (Proposition 2 below). In the rest of the paper, the weight of a map is one over its number
of edges, and a generating function of some family of maps is weighted if each map is counted with its
weight in this generating function. We let z, w, and p = p1, p2, . . . be infinitely many indeterminates.
We extend the variables in p multiplicatively to partitions, i.e. we denote pα :=

∏
i pαi

if α is a partition.
The keystone of this paper is the following result(i).
(i) the literature on the KP hierarchy has been built over the years, with many references written by mathematical physicists and

published in the physics literature. This is especially true for the link with map enumeration, often arising in formal expansions of
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(a) A map m (b) its associated bipartite
quadrangulation q (thick edges)

(c) the local rules of the
construction around a face of m

Fig. 1: Tutte’s bijection. Given a (not necessarily bipartite) map m of genus g with n edges, add a new (white)
vertex inside each face of m, and link it by a new edge to each of the corners incident to the face. The bipartite
quadrangulation q is obtained by erasing all the original edges of m, i.e. by keeping only the new (white) vertices,
the old (black) vertices, and the newly created edges. The root edge of q is the one created from the root corner
of m (which is enough to root q if we demand that its root vertex is white). (a) and (b) display an example of the
construction for a map of genus 0 (embedded on the sphere). Root corners are indicated by arrows.

Proposition 2 ([13], see also [18] ) For n, v ≥ 1, and α ` n a partition of n, let Hα(n, v) be the number
of rooted bipartite maps with n edges and v vertices, where the half face degrees are given by the parts of
α. Let H = H(z, w;p) be the weighted generating function of bipartite maps, with z marking edges, w
marking vertices, and the pi marking the number of faces of degree 2i for i ≥ 1:

H(z, w;p) := 1 +
∑
n≥1
v≥1

wvzn

n

∑
α`n

Hα(n, v)pα.

Then H is a solution of the KP equation:

−H3,1 +H2,2 +
1

12
H14 +

1

2
(H1,1)2 = 0, (1)

where indices indicate partial derivatives with respect to the variables pi, for example H3,1 := ∂2

∂p3∂p1
H .

Actually, the generating function H is a solution of an infinite system of partial differential equations,
known as the KP Hierarchy (see, e.g., [16, 13, 4]), but we will need only the simplest one of these
equations here, namely (1).

Proof: First recall that a bipartite map m with n edges labelled from 1 to n can be encoded by a triple
of permutations (σ◦, σ•, φ) ∈ (Sn)3 such that σ◦σ• = φ. In this correspondence, the cycles of the
permutation σ◦ (resp. σ•) encode the counterclockwise ordering of the edges around the white (resp.

matrix integrals. Thus it is not always easy for the mathematician to know who to attribute the results in this field. The reader may
consult [15, Chapter 5] for historical references related to matrix integrals in the physics literature, and [13, 4] for self-contained
proofs written in the language of algebraic combinatorics. As for Proposition 2, it is essentially a consequence of the classical
fact that map generating functions can be written in terms of Schur functions (see e.g. [14]), together with a result of Orlov and
Shcherbin [18] that imply that certain infinite linear combinations of Schur functions satisfy the KP hierarchy. To be self-contained
here, we have chosen to give the most easily checkable reference, and we prove Proposition 2 by giving all the details necessary
to make the link with an equivalent statement in [13].
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black) vertices of m, while the cycles of φ encode the clockwise ordering of the white to black edge-sides
around the faces of m. This encoding gives a 1 to (n − 1)! correspondence between rooted bipartite
maps with n edges and triples of permutations as above that are transitive, i.e. that generate a transitive
subgroup of Sn. We refer to [9], or Figure 2 for more about this encoding (see also [15, 14]).

Now recall Theorem 3.1 in [13]. Let b(a1,a2,··· )α,β be the number of tuples of permutations (σ, γ, π1, π2, · · · )
on {1, · · · , n} such that

1. σ has cycle type α, γ has cycle type β and πi has n− ai cycles for each i ≥ 1;
2. σγπ1π2 · · · = 1 in Sn where 1 is the identity;
3. the subgroup generated by σ, γ, π1, π2, · · · acts transitively on {1, · · · , n}.

Then the series
B =

∑
|α|=|β|=n≥1,
a1,a2,···≥0

1

n!
b
(a1,a2,··· )
α,β pαqβu

a1
1 ua22 · · ·

is a solution to the KP hierarchy in the variables p1, p2, · · · . Here q1, q2, . . . and u1, u2, . . . are two
infinite sets of auxiliary variables, and we use the notation qβ =

∏
i qβi

.
Now, using the encoding of maps as triples of permutations as above, we see that (n− 1)!Hα(n, v) =∑
i≥0 b

(n−i,n+i−v,0,··· )
α,1n ,since the coefficient on the right hand side is the number of solutions to the equa-

tion σγπ1π2 = 1 where the total number of cycles in π1 and π2 is v, σ has cycle type α and where γ is
the identity. Multiplying by σ−1 then gives π1π2 = σ−1 which matches the encoding of bipartite maps
given above. Thus, by setting q1 = w2z, qi = 0 for i ≥ 2, u1 = u2 = w−1 and ui = 0 for i ≥ 3 in B, we
get the series H as required.

Note that we choose to attribute this result to [13] since this provides a clear and checkable mathematical
reference. The result was refered to before this reference in the mathematical physics literature, however,
it is hard to find references in which the result is properly stated or proved. We refer to Chapter 5 of the
book [15] as an entry point for the interested reader.

2

2.2 Bipartite quadrangulations
Our goal is to use Proposition 2 to get information on the generating function of bipartite quadrangula-
tions. To this end, we let θ denote the operator that substitutes the variable p2 to 1 and all the variables pi

1

2

3

5

4

6

σ◦ = (1, 3, 6)(2, 5, 7, 4)

σ• = (1, 5)(2, 3)(4, 7, 6)

7

σ◦σ• = (1, 7)(2, 6)(3, 5)(4)
σ◦

σ•

(a) (b) (c)

Fig. 2: (a) The rules defining the permutations σ◦ and σ•. (b) A bipartite map with 7 edges arbitrarily labelled from
1 to 7. (c) The corresponding permutations σ◦ and σ•.
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to 0 for i 6= 2. When we apply θ to (1) we get four terms:

− θH3,1 + θH2,2 +
1

12
θH14 +

1

2
(θH1,1)2 = 0. (2)

Note that since all the derivatives appearing in (1) are with respect to p1, p2 or p3, any monomial in H
that contains a variable pi for some i 6= {1, 2, 3} gives a zero contribution to (2). Therefore each of the
four terms appearing in (2) can be interpreted as the generating function of some family of bipartite maps
having only faces of degree 2,4, or 6 (subject to further restrictions). However, thanks to local operations
on maps, we will be able to relate each term to maps having only faces of degree 4, as shown by the next
lemma.

If A(z, w) is a formal power series in z and w we denote by [zpwq]A(z, w) the coefficient of the
mononial zpwq in A(z, w).

Lemma 3 Let n, g ≥ 1. Then we have:

[z2nwn+2−2g]θH2,2 =
n− 1

2
Qng , (3)

[z2nwn+1−2g]θH1,1 = (2n− 1)Qn−1
g , (4)

[z2nwn+2−2g]θH14 = (2n− 1)(2n− 2)(2n− 3)Qn−2
g−1 , (5)

[z2nwn+2−2g]θH3,1 =
2n− 1

3

(
Qng − 2Qn−1

g

)
. (6)

We now prove the lemma. By definition, if v ≥ 1 and λ = (λ1, λ2, . . . , λ`) is a partition of some integer,
then [z2nwv]θHλ is 1

2n times the number of rooted bipartite maps with 2n edges, v vertices, ` marked
(numbered) faces of degrees 2λ1, 2λ2, . . . , 2λ`, and all other (unmarked) faces of degree 4. If r is the
number of unmarked faces, such a map has r + ` faces, and by Euler’s formula, the genus g of this map
satisfies: v − 2n + (r + `) = 2 − 2g. Moreover the number of edges is equal to the sum of the half face
degrees so 2n = 2r + |λ|, therefore we obtain the relation:

2g = n+ 2− v +
|λ|
2
− `, (7)

which we shall use repeatedly. We now proceed with the proof of Lemma 3.

Proof of (3): As discussed above, H2,2 is the weighted generating function of rooted bipartite maps with
two marked faces of degree 4, so θH2,2 is the weighted generating function of rooted quadrangulations
with two marked faces. Moreover, by (7), the maps that contribute to the coefficient [z2nwn+2−2g] in
θH2,2 have genus g. Now, there are n(n − 1) ways of marking two faces in a quadrangulation with
n faces, and the weight of such a map is 1

2n since it has 2n edges. Therefore: [z2nwn+2−2g]θH2,2 =
1

2nn · (n− 1)Qng . 2

Proof of (4) and (5): As discussed above, for k ≥ 1, θH12k is the weighted generating function of
bipartite maps carrying 2k marked (numbered) faces of degree 2, having all other faces of degree 4.
Moreover, by (7), the genus of maps that contribute to the coefficient [z2nwn+k−2g] in this series is equal
to g + 1− k. Therefore:

[z2nwn+k−2g]θH12k =
1

2n
P 2n,2k
g+1−k (8)
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where Pm,`h denotes the number of rooted bipartite maps of genus h with ` numbered marked faces of
degree 2, all other faces of degree 4, and m edges in total. Now, we claim that for all h and all m, ` with
m+ ` even one has:

Pm,`h = m(m− 1) . . . (m− `+ 1)Q
m−`

2

h . (9)

This is obvious for ` = 0 since a quadrangulation with m edges has m/2 faces. For ` ≥ 1, consider
a bipartite map with all faces of degree 4, except ` marked faces of degree 2, and m edges in total.
By contracting the first marked face into an edge, one obtains a map with one less marked face, and a
marked edge. This marked edge can be considered as the root edge of that map (keeping the canonical
bicolouration of vertices). Conversely, starting with a map having `− 1 marked faces, and m− 1 edges,
and expanding the root-edge into a face of degree 2, there are m ways of choosing a root corner in
the resulting map in a way that preserves the canonical bicolouration of vertices. Therefore one has
Pm,`h = m · Pm−1,`−1

h and (9) follows by induction. (4) and (5) then follows from (8) for k = 1 and
k = 2, respectively. 2

Proof of (6): This case starts in the same way as the three others, but we will have to use an additional
tool (a simple Tutte equation) in order to express everything in terms of quadrangulation numbers only.
First, θH3,1 is the weighted generating function of rooted bipartite maps with one face of degree 6, one
face of degree 2, and all other faces of degree 4. Moreover, by (7), maps that contribute to the coefficient
of [z2nwn+2−2g] in this series all have genus g. We first get rid of the face of degree 2 by contracting it
into an edge, and declare this edge as the root of the new map, keeping the canonical bicolouration. If the
original map has 2n edges, we obtain a map with 2n− 1 edges in total. Conversely, if we start with a map
with 2n − 1 edges and we expand the root edge into a face of degree 2, we have 2n ways of choosing a
new root corner in the newly created map, keeping the canonical bicolouration. Therefore if we let Xn

g

be the number of rooted bipartite maps having a face of degree 6, all other faces of degree 4, and 2n− 1
edges in total, we have:

[z2nwn+2−2g]θH3,1 =
1

2n
· 2nXn

g = Xn
g ,

where the first factor is the weight coming from the definition of H . Thus to prove (6) it is enough to
establish the following equation:

Qng =
3

2n− 1
Xn
g + 2Qn−1

g . (10)

The reader well acquainted with map enumeration may have recognized in (10) a (very simple case of a)
Tutte/loop equation. It is proved as follows. Let q be a rooted bipartite quadrangulation of genus g with n
faces, and let e be the root edge of q. There are two cases: 1. the edge e is bordered by two distinct faces,
and 2. the edge e is bordered twice by the same face.

In case 1., removing the edge e gives rise to a map of genus g with a marked face of degree 6. By
marking one of the 2n − 1 white corners of this map as the root, we obtain a rooted map counted by
Xn
g , and since there are 3 ways of placing a diagonal in a face of degree 6 to create two quadrangles, the

counting number N1 corresponding to case 1. satisfies (2n− 1)N1 = 3Xn
g .

In case 2., the removal of the edge e creates two faces (a priori, either in the same or in two different
connected components) of degrees k1, k2 with k1+k2+2 = 4. Now since q is bipartite, k1 and k2 are even
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which shows that one of the ki is zero and the other is equal to 2. Therefore, in q, e is a single edge hanging
in a face of degree 2. By removing e and contracting the degree 2 face, we obtain a quadrangulation with
n−1 faces (and a marked edge that serves as a root, keeping the canonical bicolouration). Since there are
two ways to attach a hanging edge in a face of degree 2, the counting number corresponding to case 2. is
N2 = 2Qn−1

g .
Writing that Qng = N1 +N2, we obtain (10) and complete the proof. 2

Proof of Theorem 1: Just extract the coefficient of [znwn+2−2g] in Equation (2) using Lemma 3, and
group together the two terms containing Qng , namely n−1

2 Qng − 2n−1
3 Qng = −n+1

6 Qng .

2

3 Fixed genus generating functions
Let Qg(t) :=

∑
n≥0Q

n
g t
n be the generating function of rooted maps of genus g by the number of edges.

It was shown in [2] that Qg(t) is a rational function of ρ :=
√

1− 12t. In genus 0, the result goes back to
Tutte [20] and one has the explicit expression:

Q0(t) = T − tT 3, (11)

where T = 1−√1−12t
6t is the unique formal power series solution of the equation

T = 1 + 3tT 2. (12)

In the following we will give a very simple recursive formula to compute the series Qg(t) as a rational
function of T , and we will study some of its properties (ii).

Theorem 4 For g ≥ 0, we have Qg(t) = Rg(T ) where T is given by (12) and Rg is a rational function
that can be computed iteratively via:

d

dT

(
(T − 1)(T + 2)

3T
Rg(T )

)
(13)

=
(T − 1)2

18T 4
(2D + 1)(2D + 2)(2D + 3)Rg−1(T ) +

(T − 1)2

3T 4

∑
i+j=g
i,j≥1

(
(2D + 1)Ri(T )

)(
(2D + 1)Rj(T )

)
,

where D =
T (1− T )

T − 2

d

dT
.

(ii) Note that being a rational function of T or ρ is equivalent, but we prefer to work with T , since as a power series T has a clear
combinatorial meaning. Indeed, T is the generating function of labelled/blossomed trees, which are the fundamental building
blocks that underly the bijective decomposition of maps [19, 8, 7]. It is thus tempting to believe that those rationality results
have a combinatorial interpretation in terms of these trees, even if it is still an open problem to find one. Indeed, so far the best
rationality statement that is understood combinatorially is that the series of rooted bipartite quadrangulations of genus g with a
distinguished vertex is a rational function in the variableU such that 1 = tT 2(1+U+U−1), which is weaker than the rationality
in T . See [7] for this result.
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Proof: First, one easily checks that Theorem 1 is equivalent to the following differential equation:

(D + 1)Qg = (14)

4t(2D + 1)Qg +
1

2
t2(2D + 1)(2D + 2)(2D + 3)Qg−1 + 3t2

∑
i+j=g
i,j≥0

(
(2D + 1)Qi

)(
(2D + 1)Qj

)
,

where D is the operator D := t · ddt . Using (12) one checks that T ′(t) = T (1−T )
T−2 , so that D =(

dT (t)
dt

)
d
dT = T (1−T )

T−2
d
dT and the definition of D coincides with the one given in the statement of the

theorem.
Now, for h ≥ 0 let Rh be the unique formal power series such that Qh(t) = Rh(T ). Grouping all the

genus g generating functions on the left hand side, we can put (14) in the form:

ARg(t) +B
d

dT
Rg(t) = R.H.S. (15)

where A = 1− 4t− 6t2(2D + 1)Q0, B = t(1− 8t− 12t2(2D + 1)Q0)), and the R.H.S. is the same as
in (13). Using the explicit expression (11) of Q0 in terms of T , we can then rewrite the L.H.S. of (15) as

(T − 1)(T + 2)

3T
R′g(T ) +

T 2 + 2

3T 2
Rg(T ) =

d

dT

(
(T − 1)(T + 2)

3T
Rg(T )

)
,

and we obtain (13). Note that we have not proved that Rg(T ) is a rational function: we admit this fact
from [2]. 2

Observe that we have Rg(1) = Qg(0) <∞ so the quantity (T−1)(T+2)
3T Rg(T ) vanishes at T = 1, and

we have:
(T − 1)(T + 2)

3T
Rg(T ) =

∫ T

1

R.H.S.,

with the R.H.S. given by (13), which shows that (13) indeed enables one to compute the Rg’s recursively.
Note that it is not obvious a priori that no logarithm appears during this integration, although this is true
since it is known that Rg is rational(iii) [2]. Moreover, since all generating functions considered are finite
at T = 1 (which corresponds to the point t = 0) we obtain via an easy induction that Rg has only poles at
T = 2 or T = −2. More precisely, by an easy induction, we obtain a bound on the degrees of the poles:

Corollary 5 For g ≥ 1 we have Qg(t) = Rg(T ) where Rg can be written as:

Rg = c
(g)
0 +

5g−3∑
i=1

α
(g)
i

(2− T )i
+

3g−2∑
i=1

β
(g)
i

(T + 2)i
, (16)

for rational numbers c(g)0 and α(g)
i , β

(g)
i .

Note that by plugging the ansatz (16) into the recursion (13), we obtain a very efficient way of computing
the Rg ’s inductively.

(iii) We unfortunately haven’t been able to reprove this fact from our approach
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We conclude this section with (known) considerations on asymptotics. From (16), it is easy to see that
the dominant singularity of Qg(t) is unique, and is reached at t = 1

12 , i.e. when T = 2. In particular

the dominant term in (16) is
α

(g)
5g−3

(2−T )5g−3 . Using the fact that 2 − T = 2
√

1− 12t + O(1 − 12t) when t
tends to 1

12 , and using a standard transfer theorem for algebraic functions [11], we obtain that for fixed g,
n tending to infinity:

Qng ∼ tgn
5(g−1)

2 12n, (17)

with tg = 1
25g−3Γ( 5g−3

2 )
α

(g)
5g−3. Moreover, by extracting the leading order coefficient in (13) when T ∼ 2,

we see with a short computation that the sequence τg = (5g − 3)α
(g)
5g−3 = 25g−2Γ( 5g−1

2 )tg satisfies the
following Painlevé-I type recursion

τg =
1

3
(5g − 4)(5g − 6)τg−1 +

1

2

g−1∑
h=1

τhτg−h, (18)

which enables one to compute the tg’s easily by induction starting from t1 = 1
24 (i.e. τ1 = 1

3 ). These
results are well known (for (17) see [1]; for (18) see [15, p.201], or [3]). So far, as far as we know, all the
known proofs of 18 rely on integrable hierarchies.

4 Discussion and comparison with other approaches
In this paper we have obtained a simple recurrence formula to compute the numbers Qng of rooted maps
of genus g with n edges inductively. It gives rise to a very efficient inductive formula to compute the fixed
genus generating functions. Let us now compare with other existing approaches to enumerate maps on
surfaces.

Tutte/loop equations. The most direct way to count maps on surfaces is to perform a root edge de-
composition, whose counting counterpart is known as Tutte equation (or loop equation in the context of
mathematical physics). This approach enabled Bender and Canfield [2] to prove the rationality of the
generating function of maps in terms of the parameter ρ as discussed in Section 3, and was generalized
to other classes of maps via variants of the kernel method (see, e.g., [12]). This approach has been con-
siderably improved by the Eynard school (see e.g. [10]) who developed powerful machinery to solve
recursively these equations for many families of maps.

However, because they are based on Tutte equations, both the methods of [2, 12] and [10] require
working with generating functions of maps carrying an arbitrarily large number of additional boundaries.
To illustrate, in the special case of quadrangulations, the “topological recursions” given by these papers
enable one to compute inductively the generating functions Q(p)

g (t) ≡ Qg(t;x1, x2, . . . , xp) of rooted
quadrangulations of genus g carrying p additional faces of arbitrary degree, marked by the additional
variables x1, x2, . . . , xp. In order to be able to compute Q(p)

g (t) these recursions take as an input the
planar generating function Q(g+k)

0 (t), so one cannot avoid working with these extra variables (linearly
many of them with respect to the genus), even to compute the pure quadrangulation series Q(0)

g .
Compared to this, the recurrence relations obtained in this paper (Theorems 1 and 4) are much more

efficient, as they require only two variables (n and g, or t and g). In particular we can compute all generat-
ing functions easily, for large g, the main limit being the size of the output. However, of course, what we
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do here is a very special case: we consider only bipartite quadrangulations, whereas the aforementioned
approaches enable one to count maps with arbitrary degree distribution!

Integrable hierarchies. It has been known for some time in the context of mathematical physics that mul-
tivariate generating functions of maps are solution of integrable hierarchies of partial differential equations
such as the KP or the Toda hierarchy, see e.g. [17, 18, 15, 13]. However these hierarchies do not char-
acterize their solutions (as shown by the fact that many combinatorial models give different solutions),
and one needs to add extra information to compute the generating functions. We know of at least three
situations in which this is possible. The first one is Okounkov’s work on Hurwitz numbers [17], where the
integrable hierarchy is the 2-Toda hierarchy, and the “extra information” takes the form of the computation
of a commutator of operators in the infinite wedge space [17, section 2.7].

The second one is Goulden and Jackson’s recurrence for triangulations [13, Theorem 5.4], which looks
very similar to our main result. The starting equation is the same as ours (Equation (1)), but for the
generating function of ordinary (non bipartite) maps. In order to derive a closed equation from it, the
authors of [13] do complicated manipulations of generating functions, but what they do could equivalently
be done via local manipulations similar to the ones we used in the proofs of (4), (3), (5). We leave as an
exercise to the reader the task of reproving [13, Theorem 5.4] along these lines (and with almost no
computation).

The last one is the present paper, where in addition to such local manipulations, we use an additional,
very degenerate, Tutte equation (Equation (10)). It seems difficult to find other cases than triangulations
and bipartite quadrangulations where the same techniques would apply, even by allowing the use of more
complicated Tutte equations. In our current understanding, this situation is a bit mysterious to us.

To conclude on this aspect, let us observe that the equations obtained from integrable hierarchies rely on
the deep algebraic structure of the multivariate generating series of combinatorial maps (and on their link
with Schur functions). This structure provides them with many symmetries that are not apparent in the
combinatorial world, and we are far from understanding combinatorially the meaning of these equations.
In particular, to our knowledge, the approaches based on integrable hierarchies are the only ones that
enable one to prove statements such as (18).

Bijective methods. In the planar case (g = 0) the combinatorial structure of maps is now well understood
thanks to bijections that relate maps to some kinds of decorated trees. The topic was initiated by Scha-
effer [19, 8] and has been developped by many others. For these approaches, the simplest case turns out
to be the one of bipartite quadrangulations. In this case, the trees underlying the bijective decompositions
have a generating function given by (12).

The bijective combinatorics of maps on other orientable surfaces is a more recent topic. Using bijec-
tions similar to the ones in the planar case, one can prove bijectively rationality results for the fixed-genus
generating function of quadrangulations [7] or more generally fixed degree bipartite maps or constella-
tions [5]. However, with these techniques, one obtains rationality in terms of some auxiliary generating
functions whose degree of algebraicity is in general too high compared to the known non-bijective result.
See the footnote page 579 for an example of this phenomenon in the case of quadrangulations. Moreover,
although the asymptotic form (17) is well explained by these methods [7, 5, 6], they do not provide any
information on the numbers tg , and do not explain the relation (18).

Therefore we are still far from being able to prove an exact counting statement such as Theorem 1
combinatorially. However, the history of bijective methods for maps tells us two things. First, that when a
bijective approach exists to some map counting problem, the case of bipartite quadrangulations is always
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the easiest one to start with. Second, that before trying to find bijections, it is important to know what
to prove bijectively. Therefore we hope that, in years to come, Theorem 1 will play a role guiding new
developments of the bijective approaches to maps on surfaces.
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