Schubert varieties, inversion arrangements, and Peterson translation

Abstract : We show that an element $\mathcal{w}$ of a finite Weyl group W is rationally smooth if and only if the hyperplane arrangement $\mathcal{I} (\mathcal{w})$ associated to the inversion set of \mathcal{w} is inductively free, and the product $(d_1+1) ...(d_l+1)$ of the coexponents $d_1,\ldots,d_l$ is equal to the size of the Bruhat interval [e,w]. We also use Peterson translation of coconvex sets to give a Shapiro-Steinberg-Kostant rule for the exponents of $\mathcal{w}$.
Type de document :
Communication dans un congrès
Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.715-726, 2014, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01207554
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 1 octobre 2015 - 09:28:17
Dernière modification le : mardi 7 mars 2017 - 15:25:49
Document(s) archivé(s) le : samedi 2 janvier 2016 - 10:38:46

Fichier

dmAT0162.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01207554, version 1

Collections

Citation

William Slofstra. Schubert varieties, inversion arrangements, and Peterson translation. Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.715-726, 2014, DMTCS Proceedings. 〈hal-01207554〉

Partager

Métriques

Consultations de la notice

43

Téléchargements de fichiers

280