M. Abe, M. Barakat, and . Cuntz, Torsten Hoge, and Hiroaki Terao. The freeness of ideal subarrangements of Weyl arrangements, 2013.

E. Akyildiz, J. C. Macdonald, and S. Shapiro, Betti numbers of smooth Schubert varieties and the remarkable formula of Kostant, Macdonald, Shapiro, and Steinberg, The Michigan Mathematical Journal, vol.61, issue.3, pp.543-553, 2012.
DOI : 10.1307/mmj/1347040258

S. Billey and T. Braden, Lower bounds for Kazhdan-Lusztig polynomials from patterns. Transformation Groups, pp.321-332, 2003.

M. Barakat and M. Cuntz, Coxeter and crystallographic arrangements are inductively free, Advances in Mathematics, vol.229, issue.1, pp.691-709, 2012.
DOI : 10.1016/j.aim.2011.09.011

URL : http://arxiv.org/abs/1011.4228

C. Sara and . Billey, Pattern avoidance and rational smoothness of Schubert varieties, Adv. Math, vol.139, issue.1, pp.141-156, 1998.

S. Billey and A. Postnikov, Smoothness of Schubert varieties via patterns in root subsystems, Advances in Applied Mathematics, vol.34, issue.3, pp.447-466, 2005.
DOI : 10.1016/j.aam.2004.08.003

]. R. Car72 and . Carter, Conjugacy classes in the Weyl group, Compositio Math, vol.25, pp.1-59, 1972.

J. B. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties. In Algebraic groups and their generalizations: classical methods, of Proc. Sympos. Pure Math, pp.53-61, 1991.

G. Cdf-+-09-]-dan-cohen, M. Denham, H. Falk, A. Scheck, H. Suciu et al., Complex Arrangements: Algebra, Geometry, Topology, 2009.

B. James, J. Carrell, and . Kuttler, Smooth points of T -stable varieties in G/B and the Peterson map, Inventiones Mathematicae, vol.151, issue.2, pp.353-379, 2003.

V. Gasharov, Factoring the Poincar?? Polynomials for the Bruhat Order onSn, Journal of Combinatorial Theory, Series A, vol.83, issue.1, pp.159-164, 1998.
DOI : 10.1006/jcta.1997.2861

A. Hultman, S. Linusson, J. Shareshian, and J. Sjöstrand, From Bruhat intervals to intersection lattices and a conjecture of Postnikov, Journal of Combinatorial Theory, Series A, vol.116, issue.3, pp.564-580, 2009.
DOI : 10.1016/j.jcta.2008.09.001

URL : https://hal.archives-ouvertes.fr/hal-01185184

A. Hultman, Inversion arrangements and Bruhat intervals, Journal of Combinatorial Theory, Series A, vol.118, issue.7, pp.1897-1906, 2011.
DOI : 10.1016/j.jcta.2011.04.005

URL : http://doi.org/10.1016/j.jcta.2011.04.005

S. Oh, A. Postnikov, and H. Yoo, Bruhat order, smooth Schubert varieties, and hyperplane arrangements, Journal of Combinatorial Theory, Series A, vol.115, issue.7, pp.1156-1166, 2008.
DOI : 10.1016/j.jcta.2008.01.003

URL : https://hal.archives-ouvertes.fr/hal-01186263

P. Orlik and H. Terao, Arrangements of hyperplanes, 1992.

S. Oh and H. Yoo, Bruhat order, rationally smooth Schubert varieties, and hyperplane arrangements, DMTCS Proceedings, FPSAC, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01186263

P. Papi, A characterization of a special ordering in a root system, Proc. AMS, pp.661-665, 1994.
DOI : 10.1090/S0002-9939-1994-1169886-7

E. Richmond and W. Slofstra, Billey???Postnikov decompositions and the fibre bundle structure of Schubert varieties, Mathematische Annalen, vol.76, issue.2, 2013.
DOI : 10.1007/s00208-015-1299-4

W. Slofstra, A pattern avoidance criterion for free inversion arrangements, Journal of Algebraic Combinatorics, vol.320, issue.2, 2013.
DOI : 10.1007/s10801-015-0663-5

W. Slofstra, Rationally smooth Schubert varieties and inversion hyperplane arrangements, Advances in Mathematics, vol.285, 2013.
DOI : 10.1016/j.aim.2015.07.034

URL : http://arxiv.org/abs/1312.7540

E. Sommers and J. Tymoczko, Exponents for B-stable ideals, Transactions of the American Mathematical Society, vol.358, issue.08, pp.3493-3509, 2006.
DOI : 10.1090/S0002-9947-06-04080-3

H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula, Inventiones Mathematicae, vol.56, issue.1, pp.159-179, 1981.
DOI : 10.1007/BF01389197

H. Yoo, Combinatorics in Schubert varieties and Specht modules, 2011.

G. M. Ziegler, Multiarrangements of hyperplanes and their freeness, In Singularities (Iowa City, IA, pp.345-359, 1986.
DOI : 10.1090/conm/090/1000610