Hall-Littlewood Polynomials in terms of Yamanouchi words

Abstract : This paper uses the theory of dual equivalence graphs to give explicit Schur expansions to several families of symmetric functions. We begin by giving a combinatorial definition of the modified Macdonald polynomials and modified Hall-Littlewood polynomials indexed by any diagram $δ ⊂ \mathbb{Z} \times \mathbb{Z}$, written as $\widetilde H_δ (X;q,t)$ and $\widetilde P_δ (X;t)$, respectively. We then give an explicit Schur expansion of $\widetilde P_δ (X;t)$ as a sum over a subset of the Yamanouchi words, as opposed to the expansion using the charge statistic given in 1978 by Lascoux and Schüztenberger. We further define the symmetric function $R_γ ,δ (X)$ as a refinement of $\widetilde P_δ$ and similarly describe its Schur expansion. We then analysize $R_γ ,δ (X)$ to determine the leading term of its Schur expansion. To gain these results, we associate each Macdonald polynomial with a signed colored graph $\mathcal{H}_δ$ . In the case where a subgraph of $\mathcal{H}_δ$ is a dual equivalence graph, we provide the Schur expansion of its associated symmetric function, yielding several corollaries.
Type de document :
Communication dans un congrès
Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.727-740, 2014, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01207555
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 1 octobre 2015 - 09:28:19
Dernière modification le : mardi 7 mars 2017 - 15:25:50
Document(s) archivé(s) le : samedi 2 janvier 2016 - 10:38:55

Fichier

dmAT0163.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01207555, version 1

Collections

Citation

Austin Roberts. Hall-Littlewood Polynomials in terms of Yamanouchi words. Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.727-740, 2014, DMTCS Proceedings. 〈hal-01207555〉

Partager

Métriques

Consultations de la notice

62

Téléchargements de fichiers

321