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Expanding Hall-Littlewood and related
polynomials as sums over Yamanouchi words

Austin Roberts

University of Washington& Seattle, WA, USA

Abstract. This paper uses the theory of dual equivalence graphs teegjyécit Schur expansions to several families
of symmetric functions. We begin by giving a combinatoriefidition of the modified Macdonald polynomials and
modified Hall-Littlewood polynomials indexed by any diagrd C Z x Z, written asH;(X; ¢, ¢) and Ps(X;t),
respectively. We then give an explicit Schur expansioﬁ’gt)(; t) as a sum over a subset of the Yamanouchi words,
as opposed to the expansion using the charge statistic gived78 by Lascoux and Schiiztenberger. We further
define the symmetric functioR., s (X) as a refinement aPs and similarly describe its Schur expansion. We then
analysizeR s(X) to determine the leading term of its Schur expansion. To fage results, we associate each
Macdonald polynomial with a signed colored grafl. In the case where a subgraph7f is a dual equivalence
graph, we provide the Schur expansion of its associated ggrienfiunction, yielding several corollaries.

Résure. Ce document utilise la theorie des graphes double éauigal pour donner expansions de Schur explicites a
plusieurs familles de fonctions symétriques. Nous congoes par donner une définition combinatoire des polyr®dome
de Macdonald modifies et polyndmes de Hall-Littlewood ifiéd indexés par tout schema C Z x Z, écrit
Hs(X,q,t) etPs(X,t), respectivement. Nous donnons ensuite une expansion de &qlicite dePs (X, t) comme

une somme sur un sous-ensemble des mots Yamanouchi, pugd®expansion en utilisant la statistique de charge
donnée en 1978 par Lascoux et Schiiztenberger . Nousad&iits davantage la fonction symétrigéies (X)) comme

un raffinement dePs et décrire méme son expansion de Schur . Nous analysosskpui(X) afin de déterminer

le premier terme de son expansion de Schur. pour obteniesedtats, nous associons chaque polyndme Macdon-
ald avec un graphique coloré sigh&. En le cas ou un sous-graphe Hg est un graphe dual équivalence, nous
fournissons I'expansion de Schur de sa fonction syméragsociée, ce qui donne plusieurs corollaires.

Keywords: Dual Equivalence Graph, Hall-Littlewood Polynomials, Maoald Polynomials, quasisymmetric func-
tions, symmetric functions

1 Introduction

Adriano Garsia posed the question, when can the modifiedLitdéwood polynomialsﬁ#(X;t) be
expanded into the Schur functions as a particular sum oeeydmanouchi words, and is there a way to
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1365-80500C) 2014 Discrete Mathematics and Theoretical Computer Seié@MTCS), Nancy, France
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fix the expansion when it is not? The results of this paperradirect response to Garsia’s question. In
fact, the results we found proved to be more general thanubstipn as originally posed.

In this paper, we will concentrate on three main familiesafpomials. First, the Macdonald polyno-
mials were introduced in Macdonald (1988) and are often ddfas the set aof, t-symmetric functions
satisfying certain orthogonality and triangularity caimtis. Macdonald polynomials were shown to be
Schur positive by Mark Haiman via representation-theoaetd geometric means in Haiman (2001). Mac-
donald polynomials also specialize to several well knowrcfions, including Hall-Littlewood polynomi-
als and Jack polynomials. A combinatorial descriptionsief$chur expansion of Macdonald polynomials
remains elusive outside of some special cases.

As just noted, Macdonald polynomials specialize to Hattéwood polynomials. Hall-Littlewood
polynomials, in turn, specialize to the Schur functions adl w&s the monomial symmetric functions.
They were first studied by Paul Hall in relation to the Halleliga in Hall (1957), though their current
definition is due to D.E. Littlewood in Littlewood (1961).4hould be noted that the earliest known work
on Hall-Littlewood polynomials actually dates back to teetlres of Ernst Steinitz in Steinitz (1901).
Expanding Hall-Littlewood polynomials into Schur funat®can be achieved via the charge statistic, as
found in Lascoux and Schutzenberger (1978), though wepngisent a new expansion in this paper.

We use the statistics defined in Haglund et al. (2005), to gdime the definition for the modified Mac-
donald polynomialdi, (X; ¢, t) and the modified Hall-Littlewood polynomial3,(X; ) to any diagram
§ C Z x Z, giving the functionsHs(X; ¢, ) and Ps(X;t). We may then writePs (X ; ¢) in terms of the
refinement polynomial®, s(X), defined via row reading words of fillings éfwith a fixed descent set
~ C §. We will discuss these polynomials in the general contexdiagrams, though the reader with
a refined taste for the specific is free to repldosith a partition shape. We may then write the main
theorem of this paper as follows.

Theorem 1.1. If v and¢ are any diagrams such thatc 4, then

Ps(Xs5t) = > (s, and Ry s(X) =) > s
A]—‘é‘ w€EYamg(\) Al—‘é‘ w€EYamg(\)
invg(w)=0 ]i)nv(;((w)):O
esg(w)=~

Here, Yam () is the subset of the Yamanouchi words with contemthose elements, when thought of
as row reading words of a tableau of shapaever have thg‘" from lasti in the same pistol of as the

j + 1t from lasti + 1. The above definitions and notation will be given a more thgtotreatment in
Section 2.

The main tool used in the proof of Theorem 1.1 is the theoryual @quivalence graphs. Building
on work in Haiman (1992), Sami Assaf introduced the theorgwdl equivalence graphs in her Ph.D.
dissertation Assaf (2007) and later preprint Assaf (2018 theory was further advanced by the author
in Roberts (2013), from which we will derive the definitiondidial equivalence graph used in this paper.
In these papers, a dual equivalence graph is associategmonaetric function so that each component of
the graph corresponds to a single Schur function. Thus, ¢tharSxpansion of said symmetric function
is described by a sum over the the set of components of théagrap

This paper will focus on dual equivalence graphs that emesgemponents of a larger family of graphs.
The involutionD? : S,, — S,, was first introduced in Assaf (2007) and can be used to defiedbe sets
of a signed colored grapH; with vertex setS,, and vertices labeled by the signature functigrwhich
is defined via the inverse descent sets of permutations. \Wefmea associat®, (X;t) andR, s(X) to
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subgraphs of{s. We show that these two subgraphs are dual equivalencegafdieorem 3.4. The
main contribution of this paper to the theory of dual equevale graphs can then be stated in the following
theorem.

Theorem 1.2. Let § be a diagram of size, and letG = (V, 0, E) be a dual equivalence graph such
that G is a component of{; andG = G,. Then there is a unique vertex &f in SYams()), and
V N SYams(u) = 0 forall u # .

This paper is organized as follows. We begin with the necggsaterial from the literature in Sec-
tion 2, discussing tableaux, symmetric functions, and ewgglivalence graphs. In Section 3, we show
that the signed colored graphs associate® 1@ (X ) andP5(X;t) are dual equivalence graphs. We then
sketch the proof of Theorem 1.2 followed by Theorem 1.1. iSect is dedicated to further analysis
of H,(X;q,t), P.,(X;t), andR, ;5(X). After classifying whenH,(X;q,t) and P,(X;t) expand via
Yamanouchi words in Corollary 4.1 and Proposition 20, wenthad this section by classifying when
R, s(X) = 0 in Proposition 4.4 and giving a description of the leadingntén the Schur expansion of
R, 5(X) in Proposition 4.6.

2 Preliminaries
2.1 Tableaux and Permutations

By adiagramd, we mean a subset @ x Z. A partition X is a weekly decreasing finite sequence of
nonnegative integers; > ... > A\ > 0. We write|A\| = nor A - nif Y \; = n. We will give the
diagram of a partition in french notation by drawing lefttjied rows of boxes, wherg; is the number
of boxes in thel*” row, from bottom to top, with bottom left cell at the origirs @ the left diagram of

Figure 1.
| L] []
[ ]

Fig. 1: The diagrams for (4,3,2,2) and an arbitrary subsetZ x Z.

A tableauis a function that takes each cell of a diagrano a positive integer. We express a tableau
visually by writing the value assigned to a cell inside of te#l. A standardtableau uses each value in
some[n] = {1,...,n} exactly once. Given a standard tabl&aulefine theshapeof T', sh(T'), to be the
shape of the underlying diagram @f and we define S[P) as the set of standard tableaux with shépe
That issh(T') = ¢ for all T € ST(d). A Young tableaus a tableau in which all values are required to be
increasing up columns and across rows from left to righst@ndard Young tableais a Young tableau
that is also a standard tableau. The set of all standard Yalohgaux on diagrams of partition shapés
denoted bySYT (), and the union oBYT()) over allX - n is denoted5YT(n). For more information,
see (Fulton, 1997, Part I), (Sagan, 2001, Ch. 3), or (Statkg9, Ch. 7).

Define therow reading wordof a tableadl’, denotedw(T'), by reading across rows from left to right,
starting with the top row and working down, as in Figure 2. Téw& reading word of a standard tableau is
necessarily a permutation. Byp#stol of a diagram or tableaul’, we mean a set of cells, in row reading
order, between some celnd the cell directly below, inclusive. We will often conflate cells of a tableau
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r4[8]
3[6]9]
T[2[5]7]

Fig. 2: On the left, a standard tableau with row reading word 4836%912n the right, a standard tableau with row
reading word 3214.

T with indices of its row reading word. In particular, the eelif a pistol of§ give a set of indices oy
when thought of as the row reading word of a tabl&aaf shapey. We will refer to the indices ofv as
forming apistol of ¢ if they correspond to the cells of of a pistol dfn this fashion.

| L] | L] | L] LT

Fig. 3: Four pistols filled with bullets.

Given a permutatiom in one-line notation, the signature afis a string of 1's and-1’s, or +’s and
—’s for short, where there is & in the i*" position if and only ifi comes beforé + 1 in w. Notice
that a word is one entry longer than its signature. The sigeatf a standard tabledll is defined as
o(T) := o(rw(T)). As an example, the signatures of the tableaux in Figure 2-are- + — + —+ and
— — +, respectively.

We maystandardizea wordw with positive integer values by replacing the valuesiwith the values
in [n] while respecting the relative order of the valuesuintreating each occurrence of the valuas
less than any later occurrence of the valie w. We denote the resulting permutationsaéw). If w
is a permutation, we will sometimesistandardizev asunst(w), which is the result of replacing each
value inw with the smallest possible positive integer while resperthe relative order just described.
Specifically, ifw is a permutation, thehandi + 1 are taken to the same valueiibccurs before + 1.
Otherwise; + 1 is taken to the value that is one lager than that df w is a permutation, the signature
of w uniquely determineanst(w), andst(unst(w)) = w.

Next, we define a useful subset 8f. For A - n, let U, be the standard tableau of shapgiven
by assigning the numbers im| in order across the first row, then across the second row, arahs
Now defineSYam(}\) := {w € S,: P(w) = Uy}, whereP(w) is theinsertion tableawas given by
the Robinson-Schensted-Knuth (R-S-K) correspondench.ti@aset of permutations thetandardized
Yamanouchi words of shape We may generate SYath) more directly by considering all words of
lengthn such that there are never mar¢ 1's thani’s while reading from right to left. We further require
thati occurs); times. Any such word is called a Yamanouchi word, and the fsetich words is denoted
Yam(\). It then follows thaSYam(\) = {st(w): w € Yam(A)}. Similarly, Yam(\) = {unst(w): w €
SYam(\)}.

Definition 2.1. Let  be any diagram. Given a word of lengthn, we say thatv jams¢ if there exists
somei and somg such that thg*” from lasti in unst(w) shares a pistol of with the j + 1t from last
i+ 11in unst(w).



Hall-Littlewood Polynomials in terms of Yamanouchi words 731

We may then define
Yams(A\) = {w € Yam(\): w does not jand }, 1)
SYams(A) :={w € SYam(\): w does not jamd }, (2)

with examples of each set given in Figure 4.

~—
5]
=
N
|9] )
= o
=[]
~—
R
=
=
©
«
©
“[\D
[\}
S~—

312]1 312]3 3[3]2
Yam(373)(2,2,2) = {rW<),rW() }v rw(Il 2]1

5131 5|3 5(6|3 5|3[6
v 2.2,2) = { o ([FEH ) ow (BEE) - v (TR o (BFFE) # Yoo 222

Fig. 4. At left, the setsYam s 3 (2, 2, 2) andSYams 3y (2, 2,2). At right, examples of words ifYam(2, 2,2) and
SYam(2, 2, 2) that jam(3, 3).

Remark 2.2.

1. The usual method for listing Yamanouchi words is to begitih whe number 1 and add numbers
to the left of it, as allowed by the description of Yamanouebids in Section 2.1. The condition
that a word not jand means that upon adding thier- 1** i + 1, thisi + 1 may not be in a pistol
with the j*" i. Similarly, we may check if the addition of each new valueates an inversion pair
or an inversion triple. That is, the process is readily iratged into the procedure for generating

Yamanouchi words.

2. Forthereader that prefers permutations, we may dest¥ibei; () as follows. Consider the result
of right justifying the tablead/,, and letS be the set of pairs of values in cells that are touching on a
southeasterly diagonal. Now treate SYam(\) as a row reading word @f. Thenw € SYams(\)
if and only if no pairs inS are in a pistol ob. See Figure 5 for an example.

5T9) 5T9) OGE
6|7 67 S ={(6,5),(8,7)} 7|12
12[3[4]5) 2345 345

Fig. 5: From the leftU s » o), followed by the result of right justifying, followed hy, followed by a tableau of shape
= (3,3,3) byw € SYam((5, 2,2)) such that the paif8, 7) € S is in a pistol of. Thusw ¢ SYam, ((5, 2, 2)).

3. The set Yarf\) is a Knuth class. The s&am;()) is necessarily a subset of this class, and so can
be expressed via some set of recording tableaux of a givgrestanding a more explicit way of
generating all such recording tableaux remains an operigmob

2.2 Symmetric Functions
We will take the unorthodox approach of defining several sytnim functions via the fundamental qua-
sisymmetric functions.
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Definition 2.3. Given any signature € {£1}"~!, define thefundamental quasisymmetric function
FU(X) S Z[wl,xg, .. ] by
FU(X) = Z Tiy =Ty, -

i1<...<in
=141 :>(rj:+1

We may now use the previous definition to define the Schur fomgtrelying on a result of Ira Gessel.
While it is not the standard definition, it is the most funag@bfor our purposes.

Definition 2.4. Gessel (1984)Given any partitior\, define
S\ = Z FG’(T)(X)’ (3)

TeSYT(N)

wheres, is a Schur function of shape

In order to define Macdonald polynomials, we first need to @efmme statistics, relying on the results
in Haglund et al. (2005) for our definitions. L&tbe a tableau of shape Given a cellc € 4, let T'(c)
denote the value dI' in cell c. A descent ofl" is a cellc in ¢ such thatl'(c) > T'(d), whered is the
cell directly below and adjacent to We denote the set of descentsiofs Des¢T'). If, in addition,w is
the row reading word of’, we will say thatc is adescent ofv in 4, taking care to differentiate it from
other common meanings of the word descent. Given aca#lb, define ledc) as the number of cells in
¢ strictly above and in the same columnasVe may then define

majs(w) = maj(T) := majs(Des(T)) := > 1+leg(c). (4)
c€Des(T)

Let ¢, d, ande be cells ofs in row reading order. Theq, d, ande form atriple if ¢ andd are in the
same row and is the cell immediately below, as in Figure 6. If, in addition] is a tableau of shape
d, thene, d, ande form aninversion tripleof T if T'(e) < T'(d) < T(c), T(c) < T(e) < T(d), or
T(d) < T'(c) < T(e). As amnemonic, in each sequence of inequalities, the thaléeare presented in a
counterclockwise order. If eitheror e is not ind, then the remaining two cells form @mversion pairof
T if eitherT(c) > T'(d) orT(d) > T'(e). See Figure 6 for an example of each of these types of invessio
We may now define the final statistic as

invs(w) := inv(T') := |{inversion triples ofl'}| + |{inversion pairs of"'}|. (5)
[e] 1d] [L] 2] [2] 11 (3] 12] (2] 11 X[ 12]
Le] (] (2] (1] x 1

Fig. 6: From left, a generic triple, three inversion triples, angrtlwo inversion pairs, where denotes the lack of a
cell.

We are now able to define a generalized version of the modifiadddnald polynomials and Hall-
Littlewood polynomials (respectively) as,

ﬁé (X, q, t) — Z qinv(T)tmaj(T)1_7*0(,1‘)7 ﬁ5 (X, t) — ﬁg(X; 0,t) = Z tmaj(T)Fg(T)-

TEeST(9) TEST(S)
inv(T)=0

(6)
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Further, if we lety C §, we may define

R, s5(X)= E Fy(1y. @)
TEST(5)
inv(T)=0
Des(T)=~

It follows immediately from these definitions that

By(X:t) = Y 1msOIR, 5(X). (®)
yCé

2.3 Dual Equivalence Graphs

Definition 2.5 (Haiman (1992)) Given a permutation ir%,, expressed in one-line notation, define an
elementary dual equivalenes an involutiond; that interchanges the valués- 1,7, andi + 1 as

di(ooioi—1.i41.)= (i1 i—1..0..), 9)
di( o i—1..i41..0..)=(.i...i+1...i—1..)), (10)

and that acts as the identityiifoccurs between— 1 andi + 1. Two words arelual equivalent if one
may be transformed into the other by successive elementatiyedjuivalences.

For example, 21345 is dual equivalent to 41235 becdyigs (21345)) = d3(31245) = 41235.

We may also letl; act on the entries of a tableau by applying them to the rowingadord. It is not
hard to check that the result is again a tableau of the sanpe sfiae transitivity of this action is described
in the following theorem.

Theorem 2.6(Haiman (1992), Prop. 2.4)Two standard Young tableaux on partition shapes are dual
equivalent if and only if they have the same shape.

By definition,d; is an involution, and so we define a graph on standard Youreaak by letting each
nontrivial orbit of d; define an edge colored by By Theorem 2.6, the graph &Y T(n) with edges
labeled byl < i < n has connected components with verticeSY'(\) for each) - n. We may further
label each vertex with its signature to creatst@andard dual equivalence grajpthat we will denot&j,.
See Figure 7 for an example.

++++
[3]4] 2 [2]4] 4 [2]5] 2 [3]5] 3 [4]5]
1]2]5 3 1]3]5 1]3]4 1]2]4 n [1]2]3]
+—++ —+—+ —++- +—+- ++—+
F 2 [3] 3 [4] 4 F
[1[2]4]5] [1[2]3]5]
—FF+ +—F+ ++—F e

Fig. 7: Some standard dual equivalence graphs ¢n5.
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Definition 2.4 and Theorem 2.6 determine the connectionéetv&chur functions and dual equivalence
graphs as highlighted in (Assaf, 2013, Cor. 3.10). Given stapdard dual equivalence gragh =
V.o, E),
Z Fa(v) = S\. (11)
veV

Here,G, is an example of the following broader class of graphs.

Definition 2.7. A signed colored graphkonsists of the following data:

1. afinite vertex set’,

2. asignature functiomr : V — {£1}"~! for some fixed positive integer

3. a collectionE; of unordered pairs of distinct vertices i for eachi € {2,...,n — 1} and the
same positive integer.

We denote a signed colored graph®y= (V, 0, E2 U---U E,_1) or simplyG = (V, 0, E).

In order to give an abstract definition of dual equivalencaphs, we will need definitions for isomor-
phisms and restrictions.

Definition 2.8. Given two signed colored grapBsV, o, E) andH(V’, o', E’), anisomorphisny: G — H
is a bijective map fronV to VV’ such that botlky and¢—! preserve colored edges and signatures.

Definition 2.9. Given a signed colored gragh = (V, 0, E) and an interval of nonnegative integdrs
define the restriction of to I, denotedj|;, as the signed colored gragh= (V,¢’, E’), where

1. 0/ (v)i = 0(V)min(1)+i—1 Wheni € {1,...,[I| = 1}, andoyin(1)44—1 i defined.
2. B} = Enin(n)+i—1 Wheni € {2,3,...,[I| — 1}, andEy,iq(1)+i—1 is defined.

We now proceed to the definition of a dual equivalence grapteHve use a result of Roberts (2013)
as our definition. For more general definitions, see Assaf32and Roberts (2013).

Definition 2.10. A signed colored grapy = (V, 0, E) is adual equivalence grapif the following
properties hold:
(P1): If I is any interval of integers with/| = 6, thenG|; = G, for some partition\.
(P2): If {v,w} € E; and{w, z} € E; forsomeji—j| > 2, thenthere existg € V suchthafv,y} € E;
and{z,y} € E;.
Theorem 2.11(Assaf (2013), Thm. 3.9)A connected component of a signed colored graph is a dual
equivalence graph if and only if it is isomorphic to a unidge

Next, we will associate to every Macdonald polynomial andlHHgtlewood polynomial a signed
colored graph. To do this, we need to define an involufigrto provide the edge sets of a signed colored
graph, as defined originally in Assaf (2013). Firstdet: S,, — S,, be the involution that permutes the
valuesi — 1,4, and: + 1 as

di(coioi—1. i1 )=(.i—1..i+1.....), (12)
di(covio il =1 ) =i+l i—1...0..), (13)

and that acts as the identityiibccurs between— 1 andi + 1. For exampleqds o dy(4123) = ds(4123) =
3142.
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We now define the desired involution. Given a waraf lengthn and a diagrani of sizen,
s _{ di(w) ifthe valuesi — 1,4, andi 4+ 1 occur in a pistol of.
D3 (w) = { d;(w) otherwise. (14)

As an example, we may take = 534826179 andd as in Figure 8. Thel}(w) = d3(w) = 542836179
and D2 (w) = ds(w) = 634825179.

EE

1
[8]2[6 [3]3
1

BES

2
2[5
1]

5l

Fig. 8: Three standard tableaux of shapeAt left, a tableau with row wordy = 534826179 followed by D3 (w)
and thenD§ (w).

Given some of sizen, we may then define the signed colored grapgh= (V, o, E') with vertex set
V =S, and edge setB; defined via the nontrivial orbits de. It is readily shown that the action (bﬁff
onw preserves inw), Des; (w), and maj(w). Thus, these functions are all constant on components of
Hs. We may studygg(X; t) by restricting our attention to componentsiof where iny is zero, as in the
following definition.

Definition 2.12. Let~y and¢ be diagrams such thatC ¢ and|é| = n. DefineR., ; = (V, 0, E) as the
signed colored graph with = {w € S,,: invs(w) = 0, Dess(w) = v} andE; defined via the nontrivial
orbits of D¢ on V. DefinePs = (V’, o, E’) as the signed colored graph with = {w € S,,: invs(w) =
0} andE! defined via the nontrivial orbits db¢ on V.

Notice thatR. s = (V,0, E) is a subgraph o?; = (V’,0, E’), which in turn is a subgraph of
Hs = (V" 0, E"), each respectively comprised of connected componeri{s jrand that

R, s(X) = > vev Fo) (15)
Ps (X; t) = ZUEV’ tmajé(v)Fa(v)v (16)
Hs(X;q,t) = ey qinvs(v)tmaj(s(v)Fa(v)_ (17)

3 Dual Equivalence graphs in H;

In this section we develop the key results of the paper. Thedng lemma demonstrates the importance
of the set SYam(\) in the study of the grapf{s; and is crucial to the proof of Theorem 1.2.

Lemma 3.1. LetC andD be connected componentsif and s, respectively. Further suppose that
there exists an isomorphistn C — D, and letw be a vertex of. Thenw € SYam, () if and only if
¢$(w) € SYams(A), for all partitions shapes.

Proof of Theorem 1.2:By Theorenm2.11, we may assume the existence of an isomorphisig — G,
for somey = n. By conflating tableaux i, with their row reading words, we may considgf as
a component of, where~ is the subset of the vertical-ax{$0,i) € Z x Z: 0 < ¢ < n}. Hence,
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SYam,(\) = SYam(\). The unique standardized Yamanouchi wordjnis the row reading word df.
Applying Lemma 3.1, there is a unique permutatiorVim SYamg (\) corresponding tep—1(U)). Also
by Lemma 3.1) N SYamgs(u) = @ whenp # .

Corollary 3.2. If G = (V, 0, E) is a dual equivalence graph containediity, then

D Fowy(X) =) [V NSYams(\)] - sa (18)

veV AFn

Remark 3.3. For each partitiom\ and diagramy, there exists a sets defined as the intersection of
SYam () with the set of permutations of leng#i whose component ifis is a dual equivalence graph.
Thatis, ifG = (V, 0, E) is a component oH;, then|V N Ss(A\)| = 1if G = Gy, and|V N Ss(A)| =0
otherwise. Finding a more direct way to genersi{e\), however, is an open problem.

In order to apply the theory of dual equivalence graph§lt()X;t) andR, s(X), we need the fol-
lowing important result about their associated signedreal@raphs.

Theorem 3.4. If v and § are any diagrams such that C ¢, thenR, s andP; are dual equivalence
graphs.

Proof: We only sketch the proof here. Using Definition 2.10, it s&f§ico only consides such that

|6| = 6. Since the action oD is determined by the pistols éfconsidered as subsets of the indices of
permutations, we may reduce our consideration to the finitelny ways thad may define these subsets
of indices. We may then use a computer to classify a finiteoistomponents of{s that are not dual
equivalence graphs. By analyzing this finite list, it is gtha forward to show that it is a vertex of a
component of4;s that is not a dual equivalence graph, thersimy > 0. Henceyp is not a vertex ofP;.

Proof of Theorem 1.1: ExpressingR,, s(X ) and ﬁ;(X; t) as in (15) and (16), the result follows from
(11), Theorems 3.4, Corollary 3.2, and the fact that they rstatistic is constant on componentsyf.

We conclude this section with a discussion of some computaticonsiderations. Using the results
of this paper, we may computg,(X;¢) by making a tree — proceeding as mentioned in Part 1 of
Remark 2.2 by fillingu in reverse row reading order and checking that there areverdions, that we
still have a Yamanouchi word, and that no pistol is jammedwlite addition of each new entry. In
fact, it is readily shown that upon filling the bottom threevey such a tableau must be one of the three
possibilities in Figure 9. That is, the bottom row must beld| the second row starts withmany 2's
followed by all 1's, and then the third row has< k many 3’s followed by one of three options. Either
the rest of the third row is 1's, there or a@te- j 1's followed by all 2's, or the rest may be all 2’s if the
result is still a Yamanouchi word. It is, in theory, possitgprecompute more rows in this fashion at the
expense of more complicated rules. In this way, we may skdgthation of the beginning of the tree, and
save computation time.

3(3[1|1|1|1|1 3(3(1]1]2]2|2]|2 313(2(2|2|2]|2
2(2(2(2|1|1|1 2(2(2|2|1|1|1]1 2(2(2(2|1|1]1
1(1]1]1]1]1]1 1]1]1]1]1]1]1]1 1)1]1]1]1]1]1

Fig. 9: The three types of tableaux of the first three rowg efhen generatin@H (X;¢).
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It should be noted that the tree described above may stikk lidad ends. In that respect, a key
open problem is to find an algorithm that avoids any dead emasder to maximize efficiency. Such
an algorithm was provided for the Littlewood-Richardsoefticients in Remmel and Whitney (1984),
suggesting that it may be possible in this case as well.

4 Further Applications to Symmetric Functions

In this section, we build on the results of Section 3. In aftr, we can now explicitly answer the ques-
tion of Garsia mentioned in Section 1. We also provide théogaus result for Macdonald polynomials.
In the following two results, notice that we have shifted fagus from Yan(\) to Yam()\).

Corollary 4.1. Given a partitionu, the following equality holds if and only if does not contait3, 3, 3)

as a subdiagram.
=Y 3 v, (19)

A]—‘ l,‘ wEYam(A)
¢ invy (w)=

Proposition 4.2. Given a partition, the following equality holds if and only if does not contaiif4) or
(3,3) as a subdiagram.

X iq,t Z Z qinvﬂ(w)tmaju(w)sk. (20)

A|p| weYam(X)

We now turn our attention t&, s(X). In particular, we analyze wheR, 5(X) = 0 and find the
leading term of the Schur expansioni®f ;(X). In order to do this, we will need the following definition.
Definition 4.3. Given diagrams andé such thaty C 6, v is afillable subsebf § if the following hold.

1. If (z,y) € v, then(z,y — 1) € 4,

2. If 21 < x4 are any integers andl is any integer interval such that,, \ max(I)) C § and
(w2, min(1)) & v, then|y N (x1, I)| = [y N (2, 1)].

5 B OB OB OB E

Fig. 10: Diagrams with bullets representingand boxes representidg From the left, three examples wheyés not
a fillable subset o#, then three examples whetds a fillable subset of.

Proposition 4.4. Given diagramsy andd, thenR, 5(X) = 0 if and only if~ is not a fillable subset af.

Definition 4.5. Given diagrams andd such thaty is a fillable subset of, define thdeading Yamanouchi
word of R, 5(X) as the row reading word of the tableau of shagehieved by placing a 1 in all cells in
0 \ v and defining the values im as one larger than the the value in the cell immediately bélowe.

Notice that the leading Yamanouchi word®{ ;(X) is indeed a Yamanouchiword. We can then use the
leading Yamanouchi word to provide the leading term in theemsion ofR, s(X) into Schur functions.
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Proposition 4.6. Given diagramsy andé such thaty be a fillable subset af, let R, 5(X) = )" cas) for
some nonzero integetg, and letw € Yam(u) be the leading Yamanouchi word Bf, 5(X), then

1.cey=1if A=p,
2. ¢y = 0if A > pin lexicographic order.

References

S. H. Assaf.Dual equivalence graphs, ribbon tableaux and Macdonalg®oinials PhD thesis, Univer-
sity of California at Berkeley, 2007.

S. H. Assaf. Dual equivalence graphs I: A combinatorial prwioLLT and Macdonald polynomials.
arXiv:1005.3759v4 [math.CQ], 2013.

W. Fulton. Young Tableaux, with Applications to Representation Thaod GeometryLondon Mathe-
matical Society Student Texts 35, Cambridge Universitg&r€ambridge, 1997.

I. M. Gessel. Multipartite P-partitions and inner produstskew Schur functionsContemp. Math34:
289-317,1984.

J. Haglund, M. Haiman, and N. Loehr. A combinatorial formfdaMacdonald polynomialsJ. Amer.
Math. So¢ 18(3), 2005.

M. Haiman. Hilbert schemes, polygraphs and the Macdonaditipity conjecture.J. Amer. Math. Sqc
14(4):941-1006, 2001.

M. D. Haiman. Dual equivalence with applications, incluglianconjecture of ProctoDiscrete Math 99
(1):79-113, 1992.

P. Hall. The algebra of partitions. FProc. 4th Canadian Math. Congregsages 147-159, 1957.

A. Lascoux and M.-P. Schiitzenberger. Sur une conjectuteodeulkes. CR Acad. Sci. Paris A286:
323-324,1978.

D. Littlewood. On certain symmetric functionBroceedings of the London Mathematical Soci8(iL):
485-498, 1961.

I. G. Macdonald. A new class of symmetric functioAstes di20¢ Seminaire Lotharingien372:131-171,
1988.

J. B. Remmel and R. Whitney. Multiplying schur functiodsurnal of Algorithms5(4):471-487, 1984.

A. Roberts. Dual equivalence graphs revisited and the @xfgichur expansion of a family of LLT poly-
nomials.Journal of Algebraic Combinatori¢gDOI: 10.1007/s10801-013-0452-y), 2013.

B. E. Sagan.The Symmetric Group: Representations, Combinatorial Algms, and Symmetric Func-
tions volume 203 ofGraduate Texts in MathematicsSpringer-Verlag, New York, second edition,
2001.



Hall-Littlewood Polynomials in terms of Yamanouchi words 739

R. P. StanleyEnumerative Combinatorics. Vol, 2olume 62 ofCambridge Studies in Advanced Mathe-
matics Cambridge University Press, Cambridge, 1999.

E. Steinitz. Zur theorie der abel'schen gruppdahresbericht der Deutschen Mathematiker-Vereinigung
9(1):80-85, 1901.



740 Austin Roberts



