Honeycombs from Hermitian Matrix Pairs

Abstract : Knutson and Tao's work on the Horn conjectures used combinatorial invariants called hives and honeycombs to relate spectra of sums of Hermitian matrices to Littlewood-Richardson coefficients and problems in representation theory, but these relationships remained implicit. Here, let $M$ and $N$ be two $n ×n$ Hermitian matrices. We will show how to determine a hive $\mathcal{H}(M, N)={H_ijk}$ using linear algebra constructions from this matrix pair. With this construction, one may also define an explicit Littlewood-Richardson filling (enumerated by the Littlewood-Richardson coefficient $c_μν ^λ$ associated to the matrix pair). We then relate rotations of orthonormal bases of eigenvectors of $M$ and $N$ to deformations of honeycombs (and hives), which we interpret in terms of the structure of crystal graphs and Littelmann's path operators. We find that the crystal structure is determined \emphmore simply from the perspective of rotations than that of path operators.
Type de document :
Communication dans un congrès
Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.899-910, 2014, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01207559
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 1 octobre 2015 - 09:28:22
Dernière modification le : mardi 7 mars 2017 - 15:24:46
Document(s) archivé(s) le : samedi 2 janvier 2016 - 10:39:42

Fichier

dmAT0177.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01207559, version 1

Collections

Citation

Glenn Appleby, Tamsen Whitehead. Honeycombs from Hermitian Matrix Pairs. Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.899-910, 2014, DMTCS Proceedings. 〈hal-01207559〉

Partager

Métriques

Consultations de la notice

86

Téléchargements de fichiers

414