The arithmetic Tutte polynomials of the classical root systems

Abstract : Many combinatorial and topological invariants of a hyperplane arrangement can be computed in terms of its Tutte polynomial. Similarly, many invariants of a hypertoric arrangement can be computed in terms of its arithmetic Tutte polynomial. We compute the arithmetic Tutte polynomials of the classical root systems $A_n, B_n, C_n$, and $D_n$ with respect to their integer, root, and weight lattices. We do it in two ways: by introducing a \emphfinite field method for arithmetic Tutte polynomials, and by enumerating signed graphs with respect to six parameters.
Type de document :
Communication dans un congrès
Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.851-862, 2014, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01207564
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 1 octobre 2015 - 09:28:29
Dernière modification le : mardi 7 mars 2017 - 15:25:29
Document(s) archivé(s) le : samedi 2 janvier 2016 - 10:48:29

Fichier

dmAT0173.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

  • HAL Id : hal-01207564, version 1

Collections

Citation

Federico Ardila, Federico Castillo, Michael Henley. The arithmetic Tutte polynomials of the classical root systems. Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.851-862, 2014, DMTCS Proceedings. 〈hal-01207564〉

Partager

Métriques

Consultations de la notice

44

Téléchargements de fichiers

95