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Hopf algebra of permutation pattern functions
(Extended abstract)

Yannic Vargas∗

Laboratoire de Combinatoire et d’Informatique Mathématique (LaCIM), UQAM, Canada

Abstract. We study permutation patterns from an algebraic combinatorics point of view. Using analogues of the
classical shuffle and infiltration products for word, we define two new Hopf algebras of permutations related to the
notion of permutation pattern. We show several remarkable properties of permutation patterns functions, as well their
occurrence in other domains.

Résumé. On étudie les motifs de permutations d’un point de vue de la combinatoire algébrique. En utilisant des
analogues des produits classiques de mélanges et d’infiltration, on définit deux nouvelles algèbres de Hopf de per-
mutations reliées à la notion de motifs de permutations. On montre quelques identités remarquables des fonctions de
motifs de permutations, ainsi que ses liens avec d’autres domaines.

Keywords: Pattern permutation, shuffle, infiltration, bialgebra, Hopf algebra, representative function

1 Introduction
Let N the set of nonnegative integers. For n ∈ N, consider Sn the set of permutations on {1, 2, . . . , n}.
We denote λ the empty permutation, thus S0 = {λ}. Also, let S = ∪n≥0Sn (disjoint union) the set of
all permutations. Let QS be the set of all functions from S to Q. This is a commutative Q-algebra when
it is equipped by sum and the pointwise product: if f, g ∈ QS and σ ∈ S, then

(f + g)(σ) = f(σ) + g(σ) , (f · g)(σ) := f(σ)g(σ).

In this work we consider a special subalgebra of QS based on permutation patterns. If w, σ ∈ S, then
σ is said to be a pattern of w if there exists a subsequence of entries of w that has the same relative order
as σ. We define {wσ} as the number of occurrences of σ as a pattern of w. For example,{

25143

132

}
= |{254, 253, 143}| = 3.

Notice that {wλ} = 1 and {ww} = 1, for all w ∈ S. Permutation patterns are considered in several domains,
such as as theoretical computer science and enumerative combinatorics; namely, in problems like stack-
sorting (Knuth, 1968 [8]) and pattern avoidance. This work is intended to study permutation patterns from
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an algebraic combinatorics point of view. The main theorem of this article (proved in section 5) is the
following:

Theorem 1 The family of functions w 7→
{
w
σ

}
, for σ ∈ S, span a free commutative subalgebra of QS.

To describe the algebraic structure in the above theorem, we introduce two new products in the vector
space of permutations QS: the super-shuffle � , and the super-infiltration ⇑ (see sections 3.2 and 3.3,
respectively). The first one interpolates between two products introduced by Malvenuto and Reutenauer
in [10] (section 3, page 978). The super-infiltration is a natural generalization of the classical infiltration
product for words (see [9], chapter 6.3, page 128). We also consider the following coproduct in QS:

∆2(σ) =
∑

σ=α2 β

α⊗ β,

where 2 is defined as follow: if α = a1 · · · an ∈ Sn and β = b1 · · · bp ∈ Sp, then

α 2β := a1 · · · an(b1 + n) · · · (bp + n) ∈ Sn+p.

Theorem 2 The Q-vector space QS, endowed with the product of super-infiltration and the coproduct
∆2 , is a Hopf algebra. As an algebra, it is a free commutative Q-algebra. The function

σ 7→
(
w 7→

{
w

σ

})
is an isomorphism from this algebra to the subalgebra of theorem 1.

Theorem (2) (proved in section 4) clearly implies Theorem (1). In particular, we have an analogue of a
relation due to Chen, Fox and Lyndon (see [2]; also [9], page 131). This relation describes the algebraic
structure of the subalgebras of theorems 1 and 2:{

w

α

}{
w

β

}
=
∑
σ∈S

(α ⇑ β, σ)

{
w

σ

}
. (1)

We finish this work by showing several identities and properties of permutation pattern functions, as
well some occurrence of this objects in other domains. These results are expanded on and proven in the
manuscript [16] of the same name.

2 Classical binomial coefficients of words, shuffle and infiltration
In this section we present some basic notions on words and binomial coefficients of words. Most of the
proofs of the results mentioned here can be found in [9]. The diligent reader will notice that these facts
are straighforward to verify.

2.1 Operations on words
Let N be the set of non-negatives integers. For all n ∈ N we write [n] := {1, 2, . . . , n} and [0] := ∅. An
alphabet is a setA. The letter of the alphabet are the elements ofA. A word over the alphabetA is a finite
sequence of elements of A. The set of all words over A is denoted by A∗. The set A∗ is a monoid with
the concatenation product and the empty word, denoted by λ, as neutral element for the concatenation.
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Let w = a1a2 · · · an be a word in A∗. The length of w, denoted by |w|, is the number n of letters of
w. If I = {i1 < i2 < · · · < ik} is a subset of [n], let wI := ai1ai2 · · · aik . A word u ∈ A∗ is said to be a
subword of w if there exist a subset I of [n] such that u = wI . We write u⊆w if u is a subword of w.
If |w| = n and I ⊆ [n] is fixed, we say that w[n]\I is the complementary subword of wI in w.

The alphabet of a word w ∈ A∗ is the set alph(w) of the letters ocurring in w. If the alphabet A
is totally ordered, and u, v ∈ A∗ are such that all letters in v are greater than the letters in u, we write
alph(u) < alph(v).

2.2 Formal series and non-commutative polynomials
Let A be a countable ordered alphabet and K a closed field. A formal series with coefficients in K and
variables in A is an infinite formal linear combination

f =
∑
w∈A∗

(f, w)w,

where (f, w) is the value of f on w. It is called the coefficient of w in f . The set of all series is denoted
by K〈〈A〉〉. It acquires a K-algebra structure, with

(f + g, w) = (f, w) + (g, w) and (fg, w) =
∑
w=uv

(f, u)(g, v).

The space K〈〈A〉〉 is endowed with the following bilinear form: for all f, g ∈ K〈〈A〉〉,

〈f, g〉 :=
∑
w∈A∗

(f, w)(g, w).

2.3 Shuffle and infiltration products
If u ∈ An and v ∈ Ap, we define the shuffle product � and the infiltration product ↑ of u and v as

u� v :=
∑

I]J = [n+p]
wI=u,wJ= v

w , u ↑ v :=
∑

I∪J ⊆ [n+p]
wI=u,wJ= v

w.
(2)

Example 2.1

ba�ab = baab + baab + baba + abab + abba + abba

= 2abba + abab + 2baab + baba.

ba ↑ab = bab + aba + baab + baab + baba + abab + abba + abba

= bab + aba + ba�ab

= aba + bab + 2abba + abab + 2baab + baba.

We remark that the infiltration product contains the shuffle product. The shuffle product was introduced
by Eilenberg and MacLane in [3]. Chen, Fox and Lyndon introduced in [2] (Theorem 3.9, page 93) the
infiltration product in an algebraic framework; Ochsenschläger (see [12]) defined this product indepen-
dently in the context of binomial coefficients of words (see the next section). Both products are associative
and commutative (see [9], proposition 6.3.12 and proposition 6.3.15).
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The shuffle and infiltration product are related by the following identity ([9], Theorem. 6.3.18.):

(u�A∗)× (v�A∗) = (u ↑ v)�A∗, (3)

where A∗ is the formal series A∗ :=
∑
w∈A∗ w and × denotes the Hadamard product. For f, g ∈

K〈〈A〉〉 and w ∈ A∗, it is defined by (f × g, w) := (f, w)(g, w).

Both products can also be defined from a general recursive formula. Let Ā := A∗ ∪{0}, where 0 is the
zero of K. A quasi-shuffle product • in K〈A〉 is a bilinear product such that λ •w = w • λ = w for any
word w, and, for any a,b ∈ A and u, v ∈ A∗,

au • bv = a(u • bv) + b(au • v) + [a,b](u • v), (4)

where [−,−] : Ā× Ā→ Ā is a function satisfying:

(S1) [a, 0] = 0, for all a ∈ Ā;
(S2) [a,b] = [b,a], for all a,b ∈ Ā;
(S3) [[a,b],c] = [a, [b,c]], for all a,b,c ∈ Ā;

This construction is old and has been rediscovered many times. As mentioned by one the referees, it
probably appeared first in a work of Newman and Radford from 1979 [11]. In the last decade, it appeared
in work of Hazewinkel and (in a particular case) in work of Hoffman. Enjalbert and Minh consider the
definition above ([4], definition 2.1). Hoffman defined this product with an additional graded property on
the words in A∗ (see [6], page 51). When [a,b] := 0 for all letters in A∗ \ {λ}, we obtain the shuffle
product; if [a,b] := δa,b a, we obtain the infiltration product.

Consider now the deconcatenation coproduct:

∆(w) =
∑
w=uv

u⊗ v. (5)

Proposition 2.2 (K〈A〉, •,∆) is a bialgebra.

See [4], proposition 2.3, for a proof and [6], theorem 3.1, for the graded case.

2.4 Binomial coefficients of words
An important tool for counting subwords is the notion of binomial coefficient of words, a generalization
of the classical binomial coefficient for integers. Given u, v ∈ A∗, the number of subwords of u that are
equal to v is called the binomial coefficient of u by v and is denoted by

(
u
v

)
. For example,(

bbab

bab

)
= 2.

If m,n ∈ N are such that n ≤ m and a is a letter in A, we remark that(
am

an

)
=

(
m

n

)
,

where the right hand side denotes the classical binomial coefficient. of integers.
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The binomial coefficients of words are closely related to the shuffle and infiltration products. For
instance, the coefficient of u in the infiltration product of u and v is

(u ↑ v, u) = |{(I, J) : I ∪ J ⊆ [|u|+ |v|], uI = u, uJ = v}| = |{J ⊆ [|u|] : uJ = v}| =
(
u

v

)
.

A way to encode all subwords of a fixed word is given by the Magnus transformation: it is the algebra
endomorphism µ of Z〈A〉 defined by µ(a) = λ+ a, for all a ∈ A. For example,

µ(bbab) = (λ+ b)(λ+ b)(λ+ a)(λ+ b)

= λ+ a + 3b + ab + 2ba + 3bb + 2bab + bba + bbb + bbab.

Is easy to see that
µ(u) =

∑
v ∈A∗

(
u

v

)
v, (6)

for all u ∈ A∗. The Magnus transformation is an automorphism ([9], cor. 6.3.8.). The inverse is given by

µ−1(u) =
∑
v ∈A∗

(−1)|u|+|v|
(
u

v

)
v. (7)

It can be shown (by induction on the length) that the shuffle of a word v ∈ A∗ with the formal series
A∗ is:

v�A∗ =
∑
u∈A∗

(
u

v

)
u (8)

(see [9], prop. 6.3.13.). This implies that shuffling with A∗ is the adjoint operator of the Magnus trans-
formation:

〈µ(u), v〉 =

(
u

v

)
= 〈v�A∗, u〉. (9)

From the series relation (3) involving shuffle and infiltration, we obtain

〈u�A∗, w〉〈v�A∗, w〉 = 〈(u ↑ v)�A∗, w〉,

for all u, v, w ∈ A∗. By (9), this is equivalent to

〈u, µ(w)〉〈v, µ(w)〉 = 〈u ↑ v, µ(w)〉.

This implies the following “product rule” between binomial coefficients of words(
w

u

)(
w

v

)
=
∑
s∈A∗

(u ↑ v, s)
(
w

s

)
. (10)

Formally, the equation above means that the span of the set of functions {w 7→
(
w
u

)
: u ∈ A∗} is a

subalgebra of the algebra of functions from A∗ to Q, where the ring structure is defined pointwise. In the
next sections we develop an analogue of this result for permutation pattern functions.
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3 Permutation pattern, supershuffle and superinfiltration
3.1 Operations on permutations
Let n ∈ N. A permutation on [n] is a bijection from [n] to [n]. Consider Sn the set of permutations
on [n]. We denote λ the empty permutation, thus S0 = {λ}. Also, let S = ∪n≥0Sn (disjoint union)
the set of all permutations. Let A be a total ordered alphabet. The standard permutation of a word
w = a1 · · · an on A∗ is the unique permutation, denoted st(w), such that for any i, j ∈ [n],

st(w)i < st(w)j ⇐⇒ ai < aj or (ai = aj and i < j).

The permutation st(w) may be obtained by numbering from left to right the letters of w, starting with
the smallest letter, then the second smallest letter, and so on. For example, if a < b < c we have

u cbbabbacb
st(u) 834156297

If σ ∈ Sn and k ∈ N let
[σ]k := (σ1 + k)(σ2 + k) · · · (σn + k).

The set of permutations S is an associative monoid with the product

α 2β := α[β]n = α1 · · ·αn(β1 + n) · · · (βp + n) ∈ Sn+p, (11)

if α = α1 · · ·αn ∈ Sn and β = β1 · · ·βp ∈ Sp. A permutation σ is said indecomposable if σ = α 2β
implies α = λ or β = λ. Let Ind the set of the indecomposable permutations. Then, S is a free monoid
generated by Ind.

3.2 Permutation pattern
If w, σ ∈ S, then σ is said to be a pattern of w if there exists a subsequence of entries of w that has the
same relative order as σ. We define {wσ} as the number of permutation patterns of σ in w. In terms of
standardization, this number can be described as{

w

σ

}
= |{u⊆w : st(u) = σ}|. (12)

Notice that
{
w
λ

}
= 1 and

{
w
w

}
= 1, for all w ∈ S.

Example 3.1 {
25143

312

}
= |{514, 513}| = 2.

Some combinatorial numbers can be deduced from the number of permutation patterns of a permutation.
For instance, if k ≤ n, we have {

12 · · ·n
12 · · · k

}
=

(
n

k

)
. (13)

Also, if σ ∈ S, then {
σ

12

}
= coinv(σ) and

{
σ

21

}
= inv(σ), (14)

where coinv(σ) and inv(σ) are the number of coinversions and inversions of σ, respectively:

coinv(σ) := |{(i, j) : i < j and σi < σj}| , inv(σ) := |{(i, j) : i < j and σi > σj}|. (15)
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3.3 Supershuffle

In [10], Malvenuto and Reutenauer introduced two products in KS. If α ∈ Sn and β ∈ Sp, let

α ∗ β :=
∑
w=uv

st(u)=α, st(v)=β
alph(u)] alph(v)=[n+p]

w and α ∗′ β := α� [β]n =
∑

I]J=[n+p]
wI=α ,wJ=[β]n

alph(wI)] alph(wJ )=[n+p]

w

It is proved that (KS, ∗) and (KS, ∗′) are isomorphic algebras. The isomorphism is given by θ :
KS → KS, where θ is defined on permutations by θ(σ) = σ−1. It is possible to rewrite these two
products using the notion of binomial coefficients of words: if u, v, w are words on an alphabet A, let(
w
u,v

)
be the number of complementary subwords (w1, w2) of w such that w1 = u and w2 = v. Using the

isomorphism θ, we have

α ∗ β =
∑

w∈Sn+p

(
w

α−1, [β−1]n

)
w−1 and α ∗′ β =

∑
w∈Sn+p

(
w

α, [β]n

)
w. (16)

We define a new product in KS which interpolates between ∗ and ∗′. If α ∈ Sn and β ∈ Sp, the
supershuffle of α and β is

α�β :=
∑

I]J=[n+p]
st(wI)=α , st(wJ )=β

alph(wI)] alph(wJ )=[n+p]

w, (17)

The difference between the definitions of α�β, α∗β and α∗′β is indicated in blue below. Ifw ∈ Sn+p,
let
{
w
α,β

}
:= |{(I, J) : I ] J = [n+ p] , st(wI) = α , st(wJ) = β}|. Then, by definition of � we have

α�β =
∑

w∈Sn+p

{
w

α, β

}
w. (18)

Observe that
{
w
α,β

}
=
{
w
β,α

}
. So, the product � is commutative. Also, we remark that

{
w
α,λ

}
=
{
w
α

}
,

for all w,α ∈ S. It is straightforward to prove that � is associative (see [16] for more details).

Example 3.2

21� 1 = 213 + 132 + 2 · (312 + 231) + 3 · 321.

21� 12 = 1243 + 3142 + 4231 + 1324 + 2413 + 2134 + 4312 + 3421

+ 2 · (4132 + 2314 + 1423 + 3124 + 4213 + 1342 + 2431)

+ 3 · (2341 + 3214 + 1432 + 4123).

We have, for example, (21� 12, 2341) =
{

2341
21,12

}
= |{(21, 34), (31, 24), (41, 23)}| = 3.
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3.4 Superinfiltration
We present now an analogue of the infiltration product for permutations. Let α ∈ Sn, β ∈ Sp. The
superinfiltration of α and β is

α ⇑ β :=
∑

I∪J ⊆ [n+p]
|I|=n , |J|=p

st(wI)=α , st(wJ )=β

w. (19)

Let
[
w
α,β

]
:= (α ⇑ β,w). The superinfiltration contains the supershuffle, as the infiltration contains the

shuffle product of words. Indeed:[
w

α, β

]
=

∣∣∣∣{(u, v) :
u⊆w, v ⊆w

st(u) = α, st(v) = β

}∣∣∣∣ (20)

and {
w

α, β

}
=

∣∣∣∣∣∣
(u, v) :

u⊆w, v ⊆w
st(u) = α, st(v) = β

v complementary subword of u in w


∣∣∣∣∣∣ . (21)

From (20), it is clear that the superinfiltration is commutative. Also, it is straightforward to prove that
⇑ is associative (see [16] for more details). As for the supershuffle product, we remark that

[
w
α,λ

]
=
{
w
α

}
.

Example 3.3 We have:[
2341

231, 21

]
= |{(231, 21), (231, 31), (231, 41), (241, 21),

(241, 31), (241, 41), (341, 21)(341, 31), (341, 41)}| = 9.[
231

231, 21

]
= |{(231, 21), (231, 31)}| = 2.

Then:
231⇑ 21 = 231� 21 + · · ·+ 9 · 2341 + · · ·+ 2 · 231. (22)

The map θ behaves well with the supershuffle and the superinfiltration product.

Proposition 3.4 Let w,α, β ∈ S. Then
{
w
α,β

}
=
{

w−1

α−1,β−1

}
and

[
w
α,β

]
=
[

w−1

α−1,β−1

]
. In particular,

θ(α�β) = θ(α)� θ(β) and θ(α ⇑ β) = θ(α) ⇑ θ(β).

4 Hopf algebras of supershuffle and superinfiltration
For basic definitions and facts about bialgebras and Hopf algebras see [5], [7] or [15]. The supershuffle
and superinfiltration products satisfy the following property:

Lemma 4.1 Let σ, π, α, β ∈ S. Then{
σ 2π

α, β

}
=

∑
α=α′ 2α′′

β=β′ 2 β′′

{
σ

α′, β′

}{
π

α′′, β′′

}
and

[
σ 2π

α, β

]
=

∑
α=α′ 2α′′

β=β′ 2 β′′

[
σ

α′, β′

][
π

α′′, β′′

]
.

(23)



Hopf algebra of permutation pattern functions 847

These identities can be seen in an algebraic framework(i): let µ� and µ⇑ be the bilinear extensions of
the supershuffle and superinfiltration products, respectively, and consider the map ∆2 : KS→ KS⊗KS
defined by

∆2(σ) :=
∑

σ=α2 β

α⊗ β. (24)

Then, the lemma above said that ∆2 is a homomorphism for both products µ� and µ⇑. In analogy with
proposition (2.2), we have:

Theorem 4.2 (KS, µ� ,∆2 ) and (KS, µ⇑,∆2 ) are bialgebras.

By a theorem of Milnor and Moore, every graded and locally finite bialgebra possesses an antipode, and
then it is a Hopf algebra (for more details see for example [1], page 18, section 5). Since (KS, µ� ,∆2 )
satisfies these hypothesis, we have

Theorem 4.3 (KS, µ� ,∆2 ) is a Hopf algebra.

The algebra (KS, µ⇑) is not graded by the length (see the example (3.3)) and then an antipode does
not come “for free” from the the theorem of Milnor-Moore. However, the bialgebra (KS, µ⇑,∆2 ) in-
deed possesses a structure of Hopf algebra. The description of the antipodes of (KS, µ� ,∆2 ) and
(KS, µ⇑,∆2 ) is discussed in the section (4.2).

The application ∆2 is a variant of the coproduct in the Malvenuto-Reutenauer Hopf algebra, with
respect to its “monomial functions” introduced by Aguiar and Sottile [1]. We remark that ∆2 is not
cocommutative.

4.1 (KS, µ� ,∆2 ) and (KS, µ⇑,∆2 ) are free and cofree.
Let A a totally ordered alphabet and <lex the lexicographic order on A∗. Recall that a Lyndon word
over A is a non-empty word which is strictly smaller than each of its proper right factors, for <lex. We
denote the set of all Lyndon words on A by L. Any word w ∈ A∗ can be factorized in a unique way
as a decreasing product (for lexicographic order) of Lyndon words (see [2], [9] or [15]). In other words,
w = `r11 · · · `

rk
k , where `i ∈ L and `i >lex `j if i < j. We will use the following technical result:

Lemma 4.4 (Radford[14]) Let w = `r11 · · · `
rk
k ∈ A∗, with `1, . . . , `k ∈ L. The polynomial

Qw = 1/(r1! · · · rk!) `� r1
1 � · · · � `� rk

k

can be written as w+Rw, where Rw contains only words of weight equal to the weight of w, but smaller
than w (for the lexicographic order).

In order to prove Theorem 2, we will need to introduce analogous notions for permutations. First,
consider the following total order on the set of indecomposable permutations Ind: if α, β ∈ Ind, we define

α < β if |α| < |β|, or |α| = |β| and α <lex β.

Then, the elements in Ind are totally ordered as 1 < 21 < 231 < 312 < 321 < 2341 < · · · . We define
a Lyndon permutation as a permutation σ such that σ 6= λ, and for each factorization σ = α 2β, with
α, β 6= λ, one has σ < β. We denote the set of all Lyndon permutations by LS.

(i) These identities are also related with the notion of section coefficients of a bialgebra, as in [7] . We discuss this notion related to
permutation pattern function in a future work.
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Lemma 4.5 Any permutation σ ∈ Ind∗' S can be factorized in a unique way as a decreasing product
(for the order <) of Lyndon permutations.

Consider now the following variation of the shuffle product: let �2 be the relative shuffle to the alphabet
Ind. Formally, if σ, π ∈ Ind∗' S and α, β ∈ Ind,

(α 2σ)�2 (β 2π) := α 2 (σ�2 (β 2π)) + β 2 ((α 2σ)�2 π), (25)

and σ�2λ = λ�2 σ = σ. For instance,

(21 2 1)�2 21 = 21 2 1 2 21 + 21 2 21 2 1 + 21 2 21 2 1 = 21 2 1 2 21+2·(21 2 21 2 1) = 21354+2·(21435).

For each σ ∈ S, let |σ|2 be the relative length of σ over Ind; it is the number of letters of σ as a word
in the alphabet Ind. For example, |231465|2 = 3, because 231465 = 231 2 1 2 21.

Lemma 4.6 Let α ∈ Sn, β ∈ Sp. Then

α�β = α�2 β + sum of permutations π ∈ Sn+p such that |π|2 < |α|2 + |β|2. (26)

Proof of theorem (2): Let `1, . . . , `k ∈ LS, with `i ∈ Sni and |`i|2 = si. Consider σ = `2r11 2 · · · 2 `2rkk ∈
Sn, for some n ∈ N. By the lemmas (4.4) and (4.6) we have

`
� r1
1 � · · · � ` � rk

k = r1! · · · rk! (σ + sum of permutations π′′∈ Sn such that π′′< σ)

+ sum of permutations π′ ∈ Sn such that |π′|2 < r1s1 + · · ·+ rksk

`⇑r11 ⇑ · · · ⇑ `⇑rkk = r1! · · · rk! (σ + sum of permutations π′′∈ Sn such that π′′< σ)

+ sum of permutations π′ ∈ Sn such that |π′|2 < r1s1 + · · ·+ rksk

+ sum of permutations π ∈ Sp, p < n.

By triangularity, (KS, � ) and (KS,⇑) are freely generated by the elements in LS. Also, by the dual
version of the theorem 6.1 in [13], (KS,∆2 ) is cofreely generated by the elements in Ind. Then,
(KS, µ� ,∆2 ) and (KS, µ⇑,∆2 ) are free and cofree bialgebras.

2

4.2 The antipodes of (KS, µ� ,∆2 ) and (KS, µ⇑,∆2 )

We give now a description of the antipode for (KS, µ� ,∆2 ) and (KS, µ⇑,∆2 ). The proof follows
easily by induction on the relative length of a permutation.

Proposition 4.7 Let σ = σ1 2σ2 2 · · · 2σn a permutation such that |σ|2 = n. Then (KS, µ� ,∆2 )
and (KS, µ⇑,∆2 ) possess antipodes S� and S⇑, respectively, given by

S� (σ) =
∑

(i1,...,ik)∈Compn

(−1)k (σ1 2 · · · 2σi1)� (σi1+1 2 · · · 2σi1+i2)� · · · � (σi1+···+ik−1+1 2 · · · 2σn),

S⇑(σ) =
∑

(i1,...,ik)∈Compn

(−1)k (σ1 2 · · · 2σi1) ⇑ (σi1+1 2 · · · 2σi1+i2) ⇑ · · · ⇑ (σi1+···+ik−1+1 2 · · · 2σn),

where Compn is the set of compositions of n.

Corollary 4.8 (KS, µ⇑,∆2 ) is a Hopf algebra.
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5 Hopf algebra of permutation pattern functions
For each σ ∈ S, let ϕσ : S→ Q be defined by

ϕσ(w) :=

{
w

σ

}
, (27)

for all w ∈ S. We call ϕσ the permutation pattern function related to σ. It is straightforward to verify
that the collection {ϕσ : σ ∈ S} is linearly independent in QS.

Proposition 5.1 Let α, β ∈ S. The pointwise product ϕσ · ϕβ in QS is given by

ϕα · ϕβ =
∑
σ∈S

[
σ

α, β

]
ϕσ. (28)

This implies the formula (1). Let PPF = Q{ϕσ : σ ∈ S}. We equip the vector space PPF with the
coproduct

∆(ϕσ) :=
∑

σ=α2 β

ϕα ⊗ ϕβ . (29)

Theorem 5.2 The vector space PPF , with the pointwise product and the coproduct ∆, is a free and
cofree Hopf algebra, isomorphic to (QS, µ⇑,∆2 ) by the map σ 7→ ϕσ . It is a subalgebra of QS, freely
generated by the set {ϕσ : σ ∈ LS}.

A characterization of the permutation pattern functions The relation (28) permit to describe the
permutation pattern functions, as follow:

Theorem 3 Let s : S→ N be a nonzero function such that, for every α, β ∈ S,

s(α)s(β) =
∑
σ ∈S

[
σ

α, β

]
s(σ).

Then, there exists σ ∈ S such that s = ϕσ .

Magnus transformation for permutation patterns. Several identities for the binomial coefficients
of words can be transfered to the framework of permutation pattern functions. We have the following
analogue of the Magnus transformation (compare with (6) and (7)): let M :=

∑
σ∈S ϕσ σ. Then:

Theorem 4 In the monoid-algebra Z[S] of the free monoid (S, 2 ), the function w 7→ M(w) define an
automorphism. The inverse of this map is given by

M−1(w) =
∑
σ∈S

(−1)|w|+|σ|
{
w

σ

}
σ.

Permutation pattern functions as representative functions The space QS is a (S, 2 )-module via
(f · σ)(π) := f(σ 2π), for all f ∈ QS and σ, π ∈ S. Recall that a function f ∈ QS is representative if
the set {f · σ}σ∈S span a finite dimensional Q-vector space. Let α, σ ∈ S. If we put β = λ in the first
formula of (4.1), we obtain

(ϕα · σ)(π) = ϕα(σ 2π) =

{
σ 2π

α

}
=

∑
α=α′ 2α′′

{
σ

α′

}{
π

α′′

}
=

∑
α=α′ 2α′′

{
σ

α′

}
ϕα′′(π).

Theorem 5 For each α ∈ S, ϕα is a representative function.

This result is a generalization of Lemma 6.6 - (iii) of [15], where it is proved that subword functions
(functions of the form w 7→

(
w
u

)
, for w, u words in an alphabet A) are representative functions. Also, it is

well known that representative functions on QS is an algebra under pointwise product (see [5], chapter 1
). We recover this result in the Theorem 2.
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