Arrangements of equal minors in the positive Grassmannian

Abstract : We discuss arrangements of equal minors in totally positive matrices. More precisely, we would like to investigate the structure of possible equalities and inequalities between the minors. We show that arrangements of equals minors of largest value are in bijection with sorted sets, which earlier appeared in the context of alcoved polytopes and Gröbner bases. Maximal arrangements of this form correspond to simplices of the alcoved triangulation of the hypersimplex; and the number of such arrangements equals the Eulerian number. On the other hand, we conjecture and prove in many cases that arrangements of equal minors of smallest value are exactly the weakly separated sets. Weakly separated sets, originally introduced by Leclerc and Zelevinsky, are closely related to the \textitpositive Grassmannian and the associated cluster algebra.
Type de document :
Communication dans un congrès
Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.777-788, 2014, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01207569
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 1 octobre 2015 - 09:28:35
Dernière modification le : mardi 7 mars 2017 - 15:25:40
Document(s) archivé(s) le : samedi 2 janvier 2016 - 10:40:18

Fichier

dmAT0167.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01207569, version 1

Collections

Citation

Miriam Farber, Alexander Postnikov. Arrangements of equal minors in the positive Grassmannian. Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.777-788, 2014, DMTCS Proceedings. 〈hal-01207569〉

Partager

Métriques

Consultations de la notice

47

Téléchargements de fichiers

84